ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Геоэкология, 2021, № 1, С. 3-13

АММОНИЙНЫЙ АЗОТ В ФИЛЬТРАТЕ ПОЛИГОНОВ ТКО: ОБРАЗОВАНИЕ, ТРАНСФОРМАЦИЯ, ДОЛГОСРОЧНОСТЬ ЗАГРЯЗНЕНИЯ

© 2021 г. И. В. Галицкая1,*, В. С. Путилина1,**,
Т. И. Юганова1,***

1 Институт геоэкологии им. Е.М. Сергеева РАН, Уланский пер., 13, стр. 2, Москва, 101000, Россия
*E-mail: galgeoenv@mail.ru
**E-mail: vputilina@yandex.ru
***E-mail: tigryu@gmail.com

Поступила в редакцию 22.10.2020 г.

В настоящей статье на основании анализа отечественной и зарубежной литературы проведено исследование вопросов, связанных с продолжительностью выделения аммонийного азота из твердых коммунальных отходов в свалочный фильтрат, форм нахождения азота в фильтрате, процессов связывания и преобразования NH4+ в свалочном теле. Рассмотрены механизмы обратимой и необратимой сорбции иона аммония, приведены значения коэффициентов его распределения для различных горных пород. Проанализированы процессы трансформации NH4+ в аэробных и анаэробных условиях, в том числе недавно установленный процесс анаэробной микробиальной реакции окисления NH4+ нитритом, названной “анаммокс” и выполняющей важную роль в биологическом цикле азота. Процессы образования и трансформации NH4+ на свалках и полигонах ТКО наглядно прослежены на примере утилизации отходов в аэробных и анаэробных свалках-биореакторах.   

Ключевые слова: полигон ТКО, фильтрат, аммоний, нитрат, нитрит, загрязнение, подземные воды, свалка-биореактор, долгосрочность эмиссии

DOI: 10.31857/S0869780921010021

СПИСОК ЛИТЕРАТУРЫ

  1. Assmuth, T.W., Strandberg T. Ground-water contamination at Finnish landfills, Water, Air & Soil Pollution, 1993, vol. 69, no. 1–2, pp. 179-199.
  2. Barlaz, M.A., Rooker, A.P., Kjeldsen, P., Gabr, M.A., Borden, R.C. Critical evaluation of factors required to terminate the postclosure monitoring period at solid waste landfills, Environmental Science & Technology, 2002, vol. 36, no. 16, pp. 3457-3464.
  3. Berge, N.D., Reinhart, D.R., Townsend, T.G. The fate of nitrogen in bioreactor landfills, Critical Reviews in Environmental Science & Technology, 2005, vol. 35, no. 4, pp. 365-399.
  4. Berge, N.D., Reinhart, D.R., Dietz, J., Townsend, T. In situ ammonia removal in bioreactor landfill leachate, Waste Management, 2006, vol. 26, no. 4, pp. 334-343.
  5. Bjerg, P.L., Rügge, K., Pedersen, J.K., Christensen, T.H. Distribution of redox-sensitive groundwater quality parameters downgradient of a landfill (Grindsted, Denmark), Environmental Science & Technology, 1995, vol. 29, pp. 1387-1394.
  6. Brady, N.C., Weil, R.R. The Nature and Properties of Soils: 13th edition, NJ, USA: Prentice-Hall, Englewood Cliffs, 2002, 960 p., ISBN: 978-0130167637.
  7. Buss, S.R., Herbert, A.W., Morgan, P., Thornton, S.F., Smith, J.W.N. A review of ammonium attenuation in soil and groundwater, Quarterly Journal of Engineering Geology & Hydrogeology, 2004, vol. 37, no. 4, pp. 347-359.
  8. Christensen, T.H., Bjerg, P.L., Kjeldsen, P. Natural attenuation: a feasible approach to remediation of groundwater pollution at landfills? Ground Water Monitoring & Remediation, 2000, vol. 20, no. 1, pp. 69–77.
  9. Christensen, T.H., Kjeldsen, P., Bjerg, P.L., Jensen, D.L., et all. Biogeochemistry of landfill leachate plumes, Applied Geochemistry, 2001, vol. 16, no. 7–8, pp. 659–718.
  10. Cozzarelli, I.M., Böhlke, J.K., Masone,r J., Breit, G.N., et all. Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma, Ground Water, 2011, vol. 49, no. 5, pp. 663–687.
  11. DeSimone, L.A., Barlow, P.M., Howes, B.L. A Nitrogen-rich Septage-effluent Plume in a Glacial Aquifer, Cape Cod, Massachusetts, February 1990 through December 1992, 96 p, (US Geological Survey Water Supply Paper; 2456). https://pubs.usgs.gov/wsp/2456/report.pdf.
  12. Ehrig, H.-J. Water and element balances of Landfills // The Landfill / Baccini P., ed., Berlin, Germany: Springer Verlag, 1989, pp. 83–115, (Lecture Notes in Earth Sciences, vol. 20).
  13. Erskine, A.D. Transport of ammonium in aquifers: retardation and degradation, Quarterly Journal of Engineering Geology & Hydrogeology, 2000, vol. 33, no. 2, pp. 161-170.
  14. Galitskaya, I.V., Putilina, V.S., Yuganova, T.I. Prodolzhitel`nost` vy`shhelachivaniya metallov iz svalochnogo tela pri zaxoronenii tverdy`x kommunal`ny`x otxodov [Duration of leaching of heavy metals from the landfill body at the municipal solid waste disposal] Geoekologiya, 2020, no. 6, pp. 3-13. (in Russian)
  15. Horan, N.J. Biological Wastewater Treatment Systems, Theory and Operation. Chichester, England, NY, USA: John Wiley & Sons, 1990, 310 p., ISBN: 0471922587, 0471924253.
  16. Hydrogeological Risk Assessments for Landfills and the Derivation of Groundwater Control and Trigger Levels: Landfill Directive Project LFTGN01, Bristol, UK: Environment Agency, 2003. http://adlib.everysite.co.uk/resources/000/064/494/Hydrogeological_Risk.pdf.
  17. Jiang, J.G., Yang, G.D., Deng, Z., Huang, Y.F., Huang, Z.L. et all. Pilot-scale experiment on anaerobic bioreactor landfills in China, Waste Management, 2007, vol. 27, no. 7, pp. 893-901.
  18. Kjeldsen, P., Christophersen, M. Composition of leachate from old landfills in Denmark, Waste Management & Research, 2001, vol. 19, no. 3, pp. 249-256.
  19. Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baun, A., et all. Present and long-term composition of MSW landfill leachate: A Review, Critical Reviews in Environmental Science & Technology, 2002, vol. 32, no. 4, pp. 297-336.
  20. Kruempelbeck, I., Ehrig, H.-J. Long-term behavior of municipal solid waste landfills in Germany, Sardinia 99, Seventh International Waste Management and Landfill Symposium, 48 October, S. Margherita di Pula, Cagliari, Proceedings vol. I / Christensen T. H., Cossu R., Stegmann R., eds., CISA - Environmental Sanitary Engineering Centre, Cagliari, Italy 1999, pp. 27-36. (from [19])
  21. Long, Y., Guo, Q.-W., Fang, C.-R., Zhu, Y.-M., Shen, D.-S. In situ nitrogen removal in phase-separate bioreactor landfill, Bioresource Technology, 2008, vol. 99, no. 13, pp. 5352-5361.
  22. Pichler, M., Kogner-Knabner, I. Chemolytic analysis of organic matter during aerobic and anaerobic treatment of municipal solid waste, Journal of Environmental Quality, 2000, vol. 29, no. 4, pp. 1337-1344.
  23. Price, G.A., Barlaz, M.A., Hater, G.R. Nitrogen management in bioreactor landfills, Waste Management, 2003, vol. 23, no. 7, pp. 675-688.
  24. Read, A.D., Hudgins, M., Philips, P. Perpetual landfilling through aeration of the waste mass; lessons from test cells in Georgia (USA), Waste Management, 2001, vol. 21, no. 7, pp. 617-629.
  25. Reinhart, D.R., Al-Yousfi, A.B. The impact of leachate recirculation on municipal solid waste landfill operating characteristics, Waste Management & Research, 1996, vol. 14, no. 4, pp. 337-346.
  26. Reinhart, D.R., McCreanor, P.T., Townsend, T.G. The bioreactor: its status and future, Waste Management & Research, 2002, vol. 20, no. 2, pp. 172-186.
  27. Ritzkowski, M., Heyer, K.-U., Stegmann, R. Fundamental processes and implications during in situ aeration of old landfills, Waste Management, 2006, vol. 26, no. 4, pp. 356-372.
  28. Robinson, H.D. The Technical Aspects of Controlled Waste Management. A Review of the Composition of Leachates from Domestic Wastes in Landfill Sites: Report for the UK Department of the Environment. Waste Science and Research / Aspinwall & Company, Ltd, London, UK, 1995. (from [19])
  29. Sliusar, N., Vaisman, Y., Korotaev, V. Ocenka dolgosrochnyx emissij ob`ektov zahoroneniya tverdyx kommunalnyx otxodov: rezultaty polevyx issledovanij i laboratornogo modelirovaniya [The estimation of long-term emissions from municipal solid waste landfill-sites: the results of field studies and Laboratory Modeling]. Ekologiya i promyshlennost' Rossii, 2016, vol. 20, no. 4, pp. 32-39. (in Russian)
  30. Thamdrup, B., Dalsgaard, T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments, Applied & Environmental Microbiology, 2002, vol. 68, no. 3, pp. 1312-1318.
  31. Townsend, T.G., Miller, W., Lee, H., Earle, J. Acceleration of landfill stabilization using leachate recycle, Journal of Environmental Engineering, 1996, vol. 122, no. 4, pp. 263-268.
  32. Vodyanitskii, Yu N. Biochemical processes in soil and groundwater contaminated by leachates from municipal landfills (Mini review), Annals of Agrarian Science, 2016, vol. 14, no. 3, pp. 249-256.
  33. Wang, Q., Matsufuji, Y., Dong, L., Huang, Q.F. et all. Research on leachate recirculation from different types of landfills, Waste Management, 2006, vol. 26, no. 8, pp. 815-824.
  34. Zavizion, Yu.V., Slyusar, N.N., Glushankova, I.S., Zagorskaya, Yu.M. Ocenka fiziko-ximicheskix parametrov otxodov raznogo sroka zaxoroneniya [Evaluation of physicochemical parameters of wastes with different disposal periods] Vestnik PNIPU. Prikladnaya e`kologiya. Urbanistika, 2015, no. 3 (19), pp. 82-96. (in Russian)
  35. Zhao, R.Z., Novak, J.T., Goldsmith, C.D. Evaluation of on-site biological treatment for landfill leachates and its impact: a size distribution study, Water Research, 2012, vol. 46, no. 12, pp. 3837-3848.
  36. Zhao, R., Gupta, A., Novak, J.T., Goldsmith, C.D. Evolution of nitrogen species in landfill leachates under various stabilization states, Waste Management, 2017, vol. 69, pp. 225-231.
  37. Zhao, Y., Song, L., Huang, R., Song, L., Li, X. Recycling of aged refuse from a closed landfill, Waste Management & Research, 2007, vol. 25, no. 2, pp. 130-138.