ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Геоэкология, 2022, № 1, С. 69-76

РАСЧЁТ ОСЕДАНИЯ ЗЕМНОЙ ПОВЕРХНОСТИ ГОРНОПРОМЫШЛЕННЫХ ОБЪЕКТОВ (НА ПРИМЕРЕ УГОЛЬНЫХ МЕСТОРОЖДЕНИЙ ДОНБАССА)

©2022 г. Т. Г. Макеева1,*, В. А. Трофимов2,**

1Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), Ярославское шоссе, д. 26, Москва, 129337 Россия

2Институт проблем комплексного освоения недр им. Н.В. Мельникова РАН,
Крюковский тупик, д. 4, Москва, 111020 Россия

*E-mail: makeeva13new@yandex.ru
**E-mail: asas_2001@mail.ru

Поступила в редакцию 19.10.2021 г.
После доработки 19.11.2021 г.
Принята к публикации 22.11.21 г.

 

The regularities of surface subsidence resulting from the formation of underground mined-out space in the stratified sedimentary deposits of horizontal or slightly inclined bedding are studied. The case of the location of workings under a thick elastic layer of strong sandstone, which serves as the direct roof of these mine workings, is considered. To simulate the state and behavior of the overlying rock strata from workings to the earth's surface, a two-layer deformation elastic model is proposed, which is numerically implemented using the boundary element method. In particular, the model makes it possible to estimate the parameters of the subsidence trough of the earth's surface. A number of cases from the practice of developing coal deposits in the Donbass are considered, proceeding from the subsidence data obtained in situ.

Keywords: subsidence trough, boundary element method, main roof, goaf, two-layer geomechanical model

DOI: 10.31857/S0869780921060084 

 

СПИСОК ЛИТЕРАТУРЫ

  1. Крауч С., Старфилд А. Методы граничных элементов в механике твердого тела. М.: Мир, 1987. 328 с.
  2. Трубецкой К.Н., Иофис М.А., Кузнецов С.В., Трофимов В.А. Основные закономерности оседания подрабатываемой толщи горных пород и прогиба зависающей кровли на малых и больших глубинах // Физико-технические проблемы разработки полезных ископаемых. 1999. №3. С. 5-11.
  3. Alejano L.R., Ramirez-Oyanguren P., Taboada J. FDM predictive methodology for subsidence due to flat and inclined coal seam mining // Int. J. of Rock Mechanics and Mining Sciences. 1999. 36(4). P. 475-491. https://doi.org/10.1016/S0148-9062(99)00022-4.
  4. Chuang Liu, Huamin Li & Hani Mitri. Effect of Strata Conditions on Shield Pressure and Surface Subsidence at a Longwall Top Coal Caving Working Face // Rock Mechanics and Rock Engineering. 2019. Vol. 52(3). P. 1523-1537. https://doi.org/10.1007/s00603-018-1601-3.
  5. Hamdi Pooya, Stead Doug, Elmo Davide, Toyra Jimmy. Use of an integrated finite/discrete element method-discrete fracture network approach to characterize surface subsidence associated with sub-level caving // Int. J. of Rock Mechanics and Mining Sciences. 2018. V. 103. P. 55-67. https://doi.org/10.1016/j.ijrmms.2018.01.02.
  6. Lizarraga Jose J., Buscamera G. A geospatial model for the analysis of time-dependent land subsidence induced by reservoir depletion // Int. J. of Rock Mechanics and Mining Sciences. 2020. V. 129(2): 104272. https://doi.org/10.1016/j.ijrmms.2020.104272.
  7. Makeeva T., Trofimov V. Forecast of deformations of the land surface from the separate clearing development, displacement and deformation in the main sections of the trough // E3S Web Conf. XXII Int. Scientific Conf. “Construction the Formation of Living Environment” (FORM-2019). 2019. V. 97:04016. https://doi.org/10.1051/e3sconf/20199704016.
  8. Makeeva T., Trofimov V. Regularities of the day surface deformation during layer mining by consecutive lavas // MATEC Web of Conf. VI Int. Scientific Conf. “Integration, Partnership and Innovation in Construction Science and Education” (IPICSE-2018), 2018. V. 2:5102013.
    https://doi.org/10.1051/matecconf/201825102013.
  9. Riesgo PP., Rodríguez F.G., Krzemienb G.A., et al. Subsidence versus natural landslides when dealing with property damage liabilities in underground coal mines // Int. J. of Rock Mechanics and Mining Sciences. 2020. V. 126(5):104175. https://doi.org/10.1016/j.ijrmms.2019.104175.
  10. Wempen, J.M. Application of DInSAR for short period monitoring of initial subsidence due to longwall mining in the mountain west United States // Int. J. of Mining Science and Technology. 2020. V. 30. Is. 1. P. 3-37. https://doi.org/10.1016/j.ijmst.2019.12.011.
  11. Wang Binglong, Xu Jialin, Xuan Davaang. Time function model of dynamic surface subsidence assessment of grout-injected overburden of a coal mine // Int. J. of Rock Mechanics and Mining Sciences. 2018. V. 104. P. 1-8. https://doi.org/10.1016/j.ijrmms.2018.01.044.
  12. Yang Xuelin, Wen Guangcai, Dai Linchao, Sun Haitao & Li Xuelong. Ground Subsidence and Surface Cracks Evolution from Shallow-Buried Close-Distance Multi-seam Mining: A Case Study in Bulianta Coal Mine // Rock Mechanics and Rock Engineering. 2019. Vol. 52(2). P. 2835-2852. https://doi.org/10.1007/s00603-018-1726-4.