Geoekologiya, 2019, Vol. 3, P. 21-31


© 2019 N. K. Fisher

Institute of Water and Ecology Problems, Far Eastern Branch, Russian Academy of Science,
ul. Dikopol’tseva, 56, Khabarovsk, 680000 Russia

According to the thermodynamic ladder, microorganisms in groundwater use electron acceptors consistently – for transformation of pollution from the pollution plume edge to its core. However, some researchers come to the conclusion that only methanogenic biotransformation of pollution or reduction of Fe(III) and Mn(IV) from the solid phase can occur in the plume, and due to the kinetic factor microorganisms use electron acceptors from the aqueous phase (O₂, NO₃⁻ и SO₄²⁻)only on the edge of the pollution plume. The purpose of the research was to determine whether microorganisms use Fe(III) and Mn(IV) as acceptors of electrons for hydrocarbons transformation in groundwater in the northern part of the Middle Heilongjiang-Amur River basin aquifer. In the study area, both lenses of petroleum-hydrocarbons (non-aqueous phase liquids) on the surface of groundwater (up to 2.5 m) and high concentrations of dissolved hydrocarbons (up to 1000 mg/l) are noted. Microbiological processes were assessed in situ by the method of geochemical indicators. The most active biogeochemical processes occurred during the spring-summer rise of groundwater level. The seasonal increasing of level led to the entry of Fe(III) and Mn(IV) into the pollution plume and activation of the microbiological processes of its reduction. Microorganisms mostly use electron acceptors from the solid phase – Fe(III) and Mn(IV), but not NO₃, SO₄² from the aqueous phase. This is confirmed by the close correlation of HCO3 - formation and that of Fe(II) and Mn(II) in groundwater (r2 up to 0.93). This says that for the groundwater self-purification the kinetic factor rather than thermodynamic one is decisive; and microorganisms use electron acceptors that are currently available. As a result of microbiological pollution destruction, the content of Fe(II) in groundwater increased up to 100 mg/l, Mn (II) – up to 16 mg/l, which exceeds the natural background 4 and 8 times, respectively. This was also because the regional geochemical background of the study area (Amur River basin) forms Fe and Mn.

Keywords: groundwater, hydrocarbons, geochemical indicators, electron acceptors, Fe (III), Mn (IV), Middle Heilongjiang-Amur River basin aquifer.

DOI: https://doi.org/10.31857/S0869-78092019321-31


1. Arkhipov, B.S., Kozlov, S.A. Zagryaznenie podzemnykh vod na territorii Dal'nevostochnogo federal'nogo okruga [Contamination of groundwater at the territory of Far east Federal okrug]. Razvedka i okhrana nedr, 2007, no. 7, pp. 86–88. (in Russian)

2. Arkhipov, G.I., Kulish, E.A., Kulish, L.I., Merkur'ev, K.M., Frumkin, I.M. Zheleznye i margantsevye rudy Dal'nego Vostoka [Ferrous and manganese ores in the Far east]. Vladivostok, DVNTs AN SSSR Publ., 1985, 296 p. (in Russian)

3. Vodyanitskii, Yu.N., Trofimov, S.Ya., Shoba, S.A. Vliyanie Fe(III) na biodegradatsiyu nefti v pereuvlazhnennykh pochvakh i osadkakh [Influence of Fe(III) on oil biodegradation in overmoistened soils and sediments]. Pochvovedenie, 2015, no. 7, pp. 877–886. (in Russian)

4. Galitskaya, I.V., Pozdnyakova, I.A. K probleme zagryazneniya podzemnykh vod i porod zony aeratsii nefteproduktami i PAU na gorodskikh territoriyakh [Contamination of groundwater and unsaturated zone deposits with oil products and PAH in urban areas]. Geoekologiya, 2011, no.4, pp. 337–343. (in Russian)

5. Gidrogeologiya SSSR. Tom XXIII. Khabarovskii krai i Amurskaya oblast'. [Hydrogeology of the USSR. Volume XXIII. Khabarovsk and Amur areas]. Moscow,  Nedra Publ., 1971, 514 p. (in Russian)

6. Zektser, I.S. Podzemnye vody kak komponent okruzhayushchei sredy [Groundwater as the environment component]. Moscow, Nauchnyi mir Publ., 2001, 328 p. (in Russian)

7. Kulakov, V.V. Mestorozhdeniya presnykh podzemnykh vod Priamur'ya. [Fresh groundwater deposits in Amur region]. Vladivostok, DVO AN SSSR Publ., 1990, 152 p. (in Russian)

8. Liverovskii, Yu.A. Soils. Yuzhnaya chast' Dal'nego Vostoka [The southern part of Far East]. Moscow, Nauka Publ., 1969, pp. 159–206. (in Russian)

9. Makhinova, A.F., Makhinov, A.N., Kuptsov,a V.A., Shuguan, Lyu, Ermoshin, V.V. Landshaftno-geokhimicheskoe raionirovanie basseina r. Amur (Rossiiskaya chast') [Landscape geochemical zoning of the Amur River basin]. Tikhookeanskaya geologiya, 2014, vol. 33, no. 2, pp. 76–89. (in Russian)

10. Putilina, V.S. Migratsiya zagryaznyayushchikh organicheskikh soedinenii v podzemnye vody [Migration of organic pollutants to groundwater]. Geoekologiya, 2003, no. 4, pp. 309–317. (in Russian)

11. Putilina, V.S., Galitskaya, I.V., Yuganova, T.I. Protsessy biokhimicheskoi degradatsii neftyanykh uglevodorodov v zone aeratsii i podzemnykh vodakh [Processes of biochemical degradation of oil hydrocarbons in the unsaturated zone and groundwater]. Geoekologiya, 2018, no. 3, pp. 43–55. (in Russian)

12. Tikhonova, T.V., Popov, V.O. Strukturnye i funktsional'nye issledovaniya mul'tigemovykh tsitokhromov c, vovlechennykh v ekstrakletochnyi transport elektronov v protsessakh dissimilyatornoi bakterial'noi metalloreduktsii [Structural and functional studies of multiheme cytochromes c involved in extracellular transport of electrons in dissimilator bacterial metal reduction]. Uspekhi biologicheskoi khimii, 2014, vol. 54, pp. 349–384. (in Russian)

13. Trufanov, A.I. Formirovanie zhelezistykh podzemnykh vod [Formation of ferrous groundwater]. Moscow, Nauka, 1982, 133 p. (in Russian)

14. Shvets, V.M. Vodorastvorennye organicheskie veshchestva i otsenka ikh vliyaniya na kachestvo pit'evykh podzemnykh vod [Aqueous organic substances and the assessment of their impact on the quality of drinking groundwater]. Geoekologiya, 2016, no. 1, pp. 43–49. (in Russian)

15. Adekunle, A.S., Oyekunle, J.A.O., Ojo, O.S., Maxakato, N.W., Olutona, G.O., Obisesan, O.R. Determination of polycyclic aromatic hydrocarbon levels of groundwater in Ife north local government area of Osun state, Nigeria.  oxicology Reports, 2017, vol. 4, pp. 39–48.

16. Banwart, S.A., Thornton, S.F. Natural attenuation of hydrocarbon compounds in groundwater. Timmis, K.N. (ed.). Handbook of hydrocarbon and lipid microbiology. Springer Verlag Berlin Heidelberg. 2010, pp. 2473–2486.

17. Bauer, R.D., Rolle, M., Bauer, S., Eberhardt, C., Grathwohl, P., Kolditz, O., Meckenstock, R.U., Griebler, C. Enhanced biodegradation by hydraulic heterogeneities in petroleum hydrocarbon plumes. Journal of contaminant hydrology, 2009, vol. 105, pp. 56–68.

18. Bjerg, P.L., Albrechtsen, H.J., Kjeldsen, P., Christensen, T.H., Cozzarelli, I.M. The biogeochemistry of contaminant groundwater plumes arising from waste disposal facilities. Holland, H., Turekian, K. (eds.) Treatise on geochemistry, 2014, vol. 11, pp. 573–605.

19. Bombach, P., Richnow, H.H., Kastner, M., Fischer, A. Current approaches for the assessment of in situ biodegradation. Applied microbiology and biotechnology, 2010, vol. 86, pp. 839–852.

20. Bosch, J., Heister, K., Hofmann, T., Meckenstock, R.U. Nanosized iron oxide colloids strongly enhance microbial iron reduction. Applied and environmental microbiology, 2010, vol.76, no.1, pp. 184–189.

21. Flynn, T.M., Sanford, R.A., Bethke, C.M. Attached and suspended microbial communities in a pristine confined aquifer. Water resources research, 2008, no. 7, pp. 1–7.

22. Goldscheider, N., Hunkeler, D., Rossi, P. Review: Microbial biocenoses in pristine aquifers and an assessment of investigative methods. Hydrogeology Journal, 2006, vol.14, no. 6, pp. 926–941.

23. Griebler, C., Lueders, T. Microbial biodiversity in groundwater ecosystems. Freshwater biology, 2009, vol. 54, pp. 649–677.

24. Griebler, C., Mindl, B., Slezak, D., Geiger-Kaiser, M. Distribution patterns of attached and suspended bacteria in pristine and contaminated shallow aquifers studied with an in situ sediment exposure microcosm. Aquatic microbial ecology, 2002, vol. 28, no. 2, pp. 117–129.

25. Jimenez, N., Richnow, H.H., Vogt, C., Treude, T., Kruger, M. Methanogenic hydrocarbon degradation: evidence from field and laboratory studies. Journal of molecular microbiology and biotechnology. 2016, vol. 26, pp. 227–242.

26. Komlos, J., Kukkadapu, R.K., Zachara, J.M., Jaffe, P.R. Biostimulation of iron reduction and subsequent oxidation of sediment containing Fe-silicates and Fe-oxides: Effect of redox cycling on Fe (III) bioreduction. Water research, 2007, vol. 41, pp. 2996–3004.

27. Lovley, D.R., Holmes, D.E., Nevin, K.P. Dissimilatory Fe (III) and Mn (IV) reduction. Advances in microbial physiology. 2004, vol. 49, pp. 219–286.

28. Lueders, T. The ecology of anaerobic degraders of BTEX hydrocarbons in aquifers. FEMS microbiology ecology, 2017, vol. 93, no. 1. Fiw220.

29. Meckenstock, R.U., Elsner, M., Griebler, C., Lueders, T., Stumpp, C., Aamand, J., Agathos, S.N., Albrechtsen, H.-J., Bastiaens, L., Bjerg, P.L., Boon, N., Dejonghe, W., Huang, W.E., Schmidt, S.I., Smolders, E., Sorensen, S.R., Springael, D., Breukelen, B.M. Biodegradation: updating the concepts of control for microbial cleanup in contaminated aquifers. Environmental science & technology, 2015, vol. 49, pp. 7073−7081.

30. Megonigal, J.P., Hines, M.E., Visscher, P.T. Anaerobic metabolism: linkages to trace gases and aerobic processes. Holland H., Turekian K. (ed.) Treatise on Geochemistry (Second Edition). 2014, vol. 10, pp. 273–359.

31. Walt, W.M.Jr. Comparisons of geochemical signatures of biotransformation of fuel hydrocarbons in groundwater. Environmental monitoring and assessment, 1999, vol. 59, pp. 257–274.

32. Widdel, F., Knittel, K., Galushko, A. Anaerobic hydrocarbon- degrading microorganisms: an overview. Timmis K.N. (ed.) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag Berlin Heidelberg. 2010, pp. 1997–2021.