ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Geoekologiya, 2020, Vol. 3, P. 74-81

ECOLOGICAL RISK OF VOLATILE ORGANIC SUBSTANCES FORMATION AFTER GREAT LANDSLIDE

L. M. Kondratievaa, Z. N. Litvinenkoa,b,#, and G. M. Filippovaa

a Institute of Water and Ecology Problems, Far Eastern Branch, Russian Academy of Sciences, ul. Dikopoltseva, 56, Khabarovsk,
680000 Russia
b
Far Eastern State Transport University, ul. Serysheva, 47, Khabarovsk, 680021 Russia
#E-mail:
zoyalitvinenko@gmail.com

The results are presented on water quality study in the Bureya Reservoir after a major landslide in December 2018. The comparative analysis of the changes in the qualitative composition of volatile organic substances in the water around the landslide body before and after blasting works and in the artificial cannel was carried out using the gas chromatography method. In the water samples, among the dominant components, methanol and methylated benzene derivatives were found; their concentration increased after water drainage through the landslide body. By the example of water extracts fromrocks and soil, it is shown that many compounds are of natural origin. Some compounds (hexane, acetone, methanol, acetates, and xylenes) can act as interme­diates during the transformation of plant residues, as well as the interrelated processes of methanogenesis and methanonotrophy. Interaction of water with rocks, the migration of organic substances from the pore space and their involvement in biogeochemical processes are the main factors of the water quality formation in the Bureya reservoir after a great landslide.

Keywords: ecological risk, reservoir, landslide, volatile organic substances

DOI: 10.31857/S0869780920030030

REFERENCES

1. Gidroekologicheskii monitoring zony vliyaniya Bureiskogo gidrouzla [Hydroecological monitoring of Burea water­works influence zone]. Khabarovsk, IVEP DVO RAN, 2007, 273 p. (in Russian)

2. Dzyuban, A.N., Tsykl metana v gruntakh vodokhra- nilisch Volzhsko-Kamskogo kaskada i ego rol' v destrukt- sii organicheskogo veschestva [Methane cycle in the soils of reservoirs of the Volga-Kama cascade and its role in the destruction of organic matter]. Trudy IBVV RAN, 2016, vol. 74 (77), pp. 21-36. (in Russian)

3. Kallistova, A.Yu., Merkel', A.Yu., Tarnovetskii, I.Yu, Pimenov, N.V. Obrazovanie i okislenie metana prokario- tami [The formation and oxidation of methane by pro­karyotes]. Mikrobiologiya, 2017, vol. 86, no.6, pp. 661­683. (in Russian)

4. Kondrat'eva, L.M Bureiskii opolzen' i ekologicheskie ris- ki [Bureya landslide and environmental risks]. Vestnik DVO RAN, 2019, no. 2, pp. 45-55. (in Russian)

5. Kulakov, V.V., Makhinov, A.N., Kim, V.I., Ostrou- khov, A.V., Katastroficheskii opolzen' i tsunami v vodohranilische Bureiskoi GES (bassein Amura) [Cata­strophic landslide and tsunami in the reservoir of the Bureyskaya hydroelectric station (Amur basin)]. Geoekologiya, 2019, no.3, pp. 13-21. (in Russian)

6. Makhinov, A.N., Kim, V.I., Ostroukhov, A.V., Krupnyi opolzen' v doline reki Bureya i tsunami v vodokhranilish- che Bureiskoi GES [A major landslide in the Bureya riv­er valley and the tsunami in the reservoir of the Bureys- kaya hydroelectric station]. Vestnik DVO RAN, 2019, no. 2, pp. 35-44. (In Russian)

7. Andres, N., Badoux, A. The Swiss flood and landslide damage database: normalization and trends. Journal of Flood Risk Management. 2018. e 12510. https://doi.org/10.1111/jfr3.12510

8. Borden, R.C., Won, J., Yuncu, B. Natural and En­hanced Attenuation of Explosives on a Hand Grenade Range. Journal of Environmental Quality, 2017, vol. 46, pp. 961-967. https://doi.org/10.2134/jeq2016.12.0466

9. Badoux, A., Andres, N., Techel, F., Hegg, C. Natural hazard fatalities in Switzerland from 1946 to 2015. Nat­ural Hazards and Earth System Science, 2016, vol. 16, no. 12, pp. 2747-2768. https://doi.org/10.5194/nhess-16-2747-2016

10. Buan, N.R. Methanogens: pushing the boundaries of biology. Emerging Topics in Life Sciences, 2018, no. 2, pp. 629-646. https://doi.org/10.1042/ETLS20180031

11. Chatterjee S., Deb U., Datta S., Walther C., Gupta D. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation. Che­mosphere, 2017, vol. 184, pp. 438-451. https://doi.org/10.1016/j.chemosphere.2017.06.008

12. Conrad, R. The global methane cycle: recent advances in understanding the microbial processes involved. En­viron. Microbiol. Rep., 2009, no. 1, pp. 285-292. https://doi.org/10.1111/j.1758-2229.2009.00038.x

13. Cozzarelli, I.M., Bekins, B.A., Eganhouse, R.P., War­ren, E., Essaid, H.I. In situ measurements of volatile aromatic hydrocarbon biodegradation rates in groundwater. J. Contam Hydrol, 2010, vol. 11, no. 1-4, pp. 48-64. https://doi.org/10.1016/j.jconhyd.2009.12.001

14. Godwin, C.M., McNamara, P.J., Markfort, C.D. Eve­ning methane emission pulses from a boreal wetland correspond to convective mixing in hollows. Journal of Geophysical Research: Biogeosciences. 2013, vol. 118, no.3, pp. 994-1005.

https://doi.org/10. I 002/jgrg.200S2

15. Gopinath, M., Dhanasekar, R. Microbial degradation of toluene. African Journal of Biotechnology, 2012, vol.11 (96), pp. 16210-16219. https://doi.org/10.5897/AJB12.2251

16. Juhasz, A.L., Naidu, R. Explosives: fate, dynamics, and ecological impact in terrestrial and marine environ­ments, Rev. Environ. Contam. Toxicol., 2007, vol. 191, pp.163-215. https://doi.org/10.1007/978-0-387-69163-3_6

17. Kalyuzhnaya, M.G., Collins, D., Chistoserdova, L. Microbial Cycling of Methane. Encyclopedia of Mi­crobiology (Fourth Edition). Reference Module in Life Sciences, Academic Press, 2019. pp. 115-124. https://doi.org/10.1016/b978-0-12-809633-8.90670-8

18. Liu, Y., Whitman, W.B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. N. Y. Acad. Sci., 2008, vol. 1125, pp. 171-189. https://doi.org/10.1196/annals.1419.019

19. Lu, Y., Li, X., Chan, A. Damage constitutive model of single flaw sandstone under freeze-thaw and load. Cold Regions Science and Technology, 2019, vol. 159, pp. 20-28. https://doi.org/10.1155/2019/9867681

20. Mesic, M., Dromart, G., Oger, P. Microbial methano­genesis in subsurface oil and coal. Res. Microbiol., 2013, vol. 164, № 9, pp. 959-972. https://doi.org/10.1016/j.resmic.2013.07.004

21. Mayumi, D., Mochimaru, H., Tamaki, H., Yamamo­to, K., Yoshioka, H., Suzuki, Y., Kamagata, Y., Sakata, S. Methane production from coal by a single methano­gen. Science, 2016, vol. 354, pp. 222—225. https://doi.org/10.1126/science.aaf8821

22. Pei, W., Zhang, M., Li, S., Lai ,Y., Jin, L. Enhance­ment of convective cooling of the porous crushed-rock layer in cold regions based on experimental investiga­tions. International Communications in Heat and Mass Transfer, 2017, vol. 87, pp. 14-21. https://doi.org/ 10.1016/j.icheatmasstransfer.2017.06.019

23. Qu, D., Dengke L., Li, X., Luo, Y., Kun, X. Damage evolution mechanism and constitutive model of freeze­thaw yellow sandstone in acidic environment. Cold Re­gions Science and Technology, 2018, vol. 155, pp. 174-183. https://doi.org/10.1155/2019/9867681

24. Sims, J. G., Steevens, J. A. The role of metabolism in the toxicity of 2,4,6-trinitrotoluene and its degradation products to the aquatic amphipod Hyalella Azteca. Ec- otoxicol. Environ. Saf., 2008, vol. 70, pp. 38-46. https://doi.org/10.1016/j.ecoenv.2007.08.019

25. Strehse, J.S., Appel, D., Geist, C., Martin, H.J., Ma­ser, E. Biomonitoring of 2,4,6-trinitrotoluene and deg­radation products in the marine environment with transplanted blue mussels (M. edulis). Toxicology, 2017, vol. 390, pp. 117-123. https://doi.org/10.1016/j.tox.2017.09.004

26. Won, J., Borden, R.C. Impact of glycerin and lignosul­fonate on biodegradation of high explosives in soi. J. Contam. Hydrol., 2016, vol. 194, pp. 1-9. https://doi.org/10.1016/j.jconhyd.2016.08.008

27. Yu, Z., Beck, D.A., Chistoserdova, L. Natural selection in synthetic communities highlights the roles of methy- lococcaceae and methylophilaceae and suggests dif­ferential roles for alternative methanol dehydrogenases in methane consumption. Front. Microbiol., 2017, V. 5, no. 8, e2392. https://doi.org/10.3389/fmicb.2017.02392

28. Yu, Q., Fan, K., You, Y., Guo, L., Yuan, C. Compara­tive analysis of temperature variation characteristics of permafrost roadbeds with different widths. Cold Regions Science and Technology, 2015, vol. 117, pp. 12-18. 10.1016/j.coldregions.2015.05.002

29. Zhang, M., McSavaney, M.J. Is air pollution causing landslides in China? Earth and Planetary Science Let­ters, 2018, vol. 481, pp. 284-289. https://doi.org/10.1016/j.epsl.2017.10.045