ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Geoekologiya, 2021, Vol. 3, P. 69-78

MOBILIZATION OF ENVIRONMENTALLY HAZARDOUS ELEMENTSFROM DRESSING TAILINGS OF LOPARITE ORES UPONATMOSPHERIC PRECIPITATION  

E.  A. Krasavtseva1,2,*, D.  V. Makarov2,**, A.  A. Selivanova3,***
V. V. Maksimova1,2,****,  A. V. Svetlov2,*****

 

1Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic, Federal Research Centre “Kola Science Centre RAS”,
ul. Fersmana, 14, Apatity, 184209, Russia

2Institute of North Industrial Ecology Problems, Federal Research Centre “Kola Science Centre RAS”, ul. Fersmana, 14a, Apatity, 184209, Russia

3 Geological Institute, Federal Research Centre “Kola Science Centre RAS”,
ul. Fersmana, 14, Apatity, 184209, Russia

*E-mail:e.krasavtseva@ksc.ru  
** E-mail: makarov@inep.ksc.ru
*** E-mail: selivanova@geoksc.apatity.ru 
**** E-mail: v.maksimova@ksc.ru
***** E-mail: a.svetlov@ksc.ru

  

The aim of the research is to characterize the effectiveness of the two most popular methods of assessing the degree of water pollution, to identify their pros and cons in environmental tasks. The comparison is made for two ways: "A comprehensive assessment of surface water pollution by hydrochemical indicators" and "Assessment of the quality of water chemistry by the total pollution indicator". The effectiveness of the methods is shown on the example of the chemical composition of the waters of river Kadamovka (Eastern Donbass) above, in the place and below the discharge of mine waters m. Glubokala on the 21st limited indicator. According to the first method regarding the requirements for MAC for fisheries water management, the river water is classified as extremely dirty. High levels of contamination are typical for the main number of ingredients, especially SO4, Al, Li, MN, Se, Fe, Be, Cu; According to the second method of drinking water requirements, the situation is assessed from an environmental point of view as a "crisis" and the requirements for fisheries water are considered a "disaster". The most intense pollution was recorded by MN, Al, Fe, Be, Li, Se, M, SO4. Comparison of water quality by the total pollution indicator on the requirements of Russia, the United States and the European Union showed close results. "The method of comprehensive assessment of surface water pollution by hydrochemical indicators" allows effective assessment of surface water pollution. This method requires a series of monitoring observations over time, assesses water pollution only by MAC to fisheries water use, relatively difficult to implement. The method "Assessment of the quality of the chemical composition of water by the total pollution indicator" makes it possible to assess the quality of the chemical composition of any types of water (atmospheric, surface, underground, man-made), relative to any Russian and foreign regulatory indicators (drinking, fisheries, requirements of WHO, USA, EU, etc.), on the set of any components.  It is easy to implement and interpret the results. The paper made recommendations on the need to improve treatment technologies and carry out rehabilitation measures.

Keywords: water pollution, total pollution indicator, fisheries and drinking water, Eastern Donbass. 

REFERENCES

  1. Goryachev, A.A., Krasavtseva, E.A., Lashchuk, V.V., Ikkonen, P.V., Smirnov, A.A., Maksimova, V.V., Makarov, D.V. Otsenka ekologicheskoi opasnosti i vozmozhnosti pererabotki khvostov obogashcheniya loparitovykh rud [Assessment of the environmental hazard and the possibility of processing loparite tailings ores]. Ekologiya i promyshlennost' Rossii, 2020, vol. 24, no. 12, pp. 46-51. (in Russian)
  2. Goryachev, A.A., Lashchuk, V.V., Krasavtseva, E.A., Alfert'ev, N.L., Makarov, D.V. Geoekologicheskaya otsenka sovremennogo sostoyaniya raznovozrastnykh khvostokhranilishch rudnika Karnasurt [Geoecological assessment of the current state of tailing dumps of different age at the Karnasurt mine]. Trudy Fersmanovskoi nauchnoi sessii GI KNC RAN [Proc. of the Fersman scientific session of the State Institute of the KSC RAS], 2020, no. 17, pp. 128–132. (in Russian)
  3. Doklad o sostoyanii i ob okhrane okruzhayushchei sredy Murmanskoi oblasti v 2018 g. [Report on the state and conservation of the environment in the Murmansk region in 2018]. Ministry of natural resources and ecology of the Murmansk region, 2019. Available at: https://gov-murman.ru/region/environmentstate/ (accessed 15.01.2021)
  4. Kislotnye vypadeniya. Dolgovremennye tendentsii [Acid fallout. Long-term tendencies]. F. Ya. Rovinsky, Ed., Leningrad, Gidrometeoizdat Publ., 1990, 440 p. (in Russian)
  5. Kryuchkov, V.V., Makarova, T.D. Aerotekhnogennoe vozdeistvie na ekosistemy Kol'skogo Severa [Aerotechnogenic impact on ecosystems of the Kola North]. Apatity, Kola Scientific Center of the USSR Academy of Sciences, 1989, 96 p. (in Russian)
  6. Lugovskaya, A.S., Nesterov, D.P., Vasil'eva, T.N., Makarov, D.V., Makarov, V.N. Mineraloobrazovanie pri vzaimodeistvii gornopromyshlennykh otkhodov s kislotnymi dozhdyami i kislymi porovymi rastvorami [Mineral formation during the interaction of mining waste with acid rain and acidic pore solutions]. Mineralogiya tekhnogeneza, 2003, vol. 4, pp. 85-98. (in Russian)
  7. Maksimova, V.V., Krasavtseva, E.A., Makarov, D.V., Masloboev, V.A. Modelirovanie khimicheskogo vyvetrivaniya khvostov obogashcheniya apatito-nefelinovykh rud pod deistviem atmosfernykh osadkov [Modeling of chemical weathering of apatite-nepheline ore dressing tailings under the influence of atmospheric precipitation]. Mineralogiya tekhnogeneza, 2013, no. 14, pp. 203-209. (in Russian)
  8. Markovich, T.I. Osobennosti gipergennogo preobrazovaniya mineralov v sul'fidnykh otvalakh [Features of hypergene transformation of minerals in sulfide dumps]. Mineralogiya tekhnogeneza, 2011, vol. 2, pp .62-76. (in Russian)
  9. Masloboev, V.A., Seleznev, S.G., Makarov, D.V., Svetlov, A.V. Otsenka ekologicheskoi opasnosti khraneniya otkhodov dobychi i pererabotki medno-nikelevykh rud [Evaluation of the environmental hazard of storage of wastes from mining and processing of copper-nickel ores]. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopaemykh, 2014, no. 3, pp. 138-153. (in Russian)
  10. Mesyats, S.P., Ostapenko, S.P. Metodicheskii podkhod k otsenke intensivnosti khimicheskogo vyvetrivaniya mineral'nogo syr'ya tekhnogennykh mestorozhdeniy [Methodical approach to assessing the intensity of chemical weathering of mineral raw materials from technogenic deposits]. Vestnik Murmanskogo gosudarstvennogo tekhnicheskogo universiteta, 2013, vol. 16, no. 3, pp. 566-572. (in Russian)
  11. Ratkin, N.E., Shablova, A.V. Kolichestvennaya otsenka aerotekhnogennogo zagryazneniya territorii Murmanskoi oblasti (chast' 1) [Quantitative assessment of airborne industrial pollution of the Murmansk region territory (part 1)]. Teoreticheskaya i prikladnaya ekologiya, 2008, no. 1, pp. 38-44. (in Russian)
  12. Ratkin, N.E., Shablova, A.V. Kolichestvennaya otsenka aerotekhnogennogo zagryazneniya territorii Murmanskoi oblasti (chast' 2) [Quantitative assessment of airborne industrial pollution of the territory of the Murmansk region territory (part 2)]. Teoreticheskaya i prikladnaya ekologiya, 2008, no. 3, pp. 27-34. (in Russian)
  13. Savenko, A.V., Savenko, V.S. Vliyanie prirodnykh organicheskikh kislot na mobilizatsiyu makro- i mikroelementov iz gornykh porod [Influence of natural organic acids on the mobilization of macro- and microelements from rocks]. Doklady Akademii nauk, 2019, vol. 485, no. 3, pp. 351-355. (in Russian)
  14. Savenko, A.V., Savenko, V.S. Kislotnaya mobilizatsiya alyuminiya iz mineralov i gornykh porod [Acid mobilization of aluminum from minerals and rocks]. Vestnik Moskovskogo universiteta. Seriya 4: Geologiya, 2018, no. 5, pp. 79-83. (in Russian)
  15. Savenko, A.V., Savenko, V.S., Dubinin, A.V. Mobilizatsiya makro- i mikroelementov iz gornykh porod pri ikh vzaimodeystvii s vodoi [Mobilization of macro- and microelements from rocks during their interaction with water]. Geologicheskaya evolyutsiya vzaimodeystviya vody s gornymi porodami. Materialy tret'ey Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiyem [Geological evolution of the interaction of water with rocks. Materials of the third All-Russian scientific conference with international participation]. Ulan-Ude, Buryat Scientific Center, Siberian Branch, Russian Academy of Sciences, 2018, pp. 165-169. (in Russian)
  16. Smolyakov, B.S., Pavlyuk, L.A., Nemirovskii, A.M. Kislotnost' i ionnyi sostav atmosfernykh osadkov i aerozoley v Novosibirskoi oblasti [Acidity and ionic composition of atmospheric precipitation and aerosols in the Novosibirsk region]. Optika atmosfery i okeana, 1996, vol. 9, no. 6, pp. 773-779. (in Russian)
  17. Sokolova, T.A. Mineralogiya i mikromorfologiya pochv; protsessy razrusheniya kvartsa, amorfnykh mineralov kremnezema i polevykh shpatov v model'nykh opytakh i v pochvakh: vozmozhnye mekhanizmy, skorost', diagnostika (analiz literatury) [Mineralogy and micromorphology of soils, the processes of destruction of quartz, amorphous minerals of silica and feldspars in model experiments and in soils: possible mechanisms, speed, diagnostics (review of publications)]. Pochvovedeniye, 2013, no. 1, pp. 98–112. (in Russian)
  18. Chanturia, V.A., Makarov, V.N., Makarov, D.V. Izmeneniye nerudnykh mineralov gornopromyshlennykh otkhodov v protsesse khraneniya pod vozdeistviem mineral'nykh kislot [Changes in nonmetallic minerals of mining waste during storage under the influence of mineral acids].  Inzhenernaya ekologiya, 2000, no. 1, pp. 31-40. (in Russian)
  19. Beckwith, R., Butler, J. Aspect of the chemistry of soil organic matter. Soils, an Australian viewpoint. Melbourne, CSIRO, London, Acad. press, 1983, 928 p.  (in Russian)
  20. Carpenter, D., Boutin, C., Allison, J.E., Parsons, J.L., Ellis, D.M. Uptake and effects of six rare earth elements (REEs) on selected native and crop species growing in contaminated soils. PloSone, 2015, no. 10(6): e0129936. doi: 10.1371/journal.pone.0129936.
  21. Dehaye, J., Badillo, M., Zikovsky, L. A laboratory study of the effects of acid rain on industrial waste and its impact on the physicochemical properties of groundwater. Radioanal. Nucl. Chem, 1988, vol. 127, no. 3, pp. 209-217.
  22. Grosjean, N., Le Jean, M., Berthelot, C. et al. Accumulation and fractionation of rare earth elements are conserved traits in the Phytolacca genus. Sci Rep, 2019, no. 9, 18458. doi: 10.1038/s41598-019-54238-3
  23. Mikołajczak, P., Borowiak, K., Niedzielski, P. Phytoextraction of rare earth elements in herbaceous plant species growing close to roads. Environmental Science and Pollution Research, 2017, no. 24(16), pp. 14091-14103. doi: 10.1007/s11356-017-8944-2.
  24. Nazreen, M., Amalina, A., Omar, M. Bioaccumulation of rare earth element by water lettuce (Pistia stratiotes). Oriental Journal of Chemistry, 2017, no. 33. pp. 1097-1102. doi: 10.13005/ojc/330305.
  25. Ramos, S., Dinali, G., Oliveira, C., Martins, G., Moreira, C., Siqueira, J., Guilherme, L. Rare earth elements in the soil environment. Current Pollution Reports, 2016, no. 2(1), pp. 28-50. doi: 10.1007/s40726-016-0026-4.
  26. Thomas, P., Carpenter, D., Boutin, C., Allison, J. Rare earth elements (REEs): Effects on germination and growth of selected crop and native plant species. Chemosphere, 2013, no. 96, pp. 57-66. doi: 10.1016/j.chemosphere.2013.07.020.
  27. Wang, X., Dong, W., Dai, X., Wang, A., Du, J., Tao, Z. Sorption and desorption of Eu and Yb on alumina: mechanisms and effect of fulvic acid. Appl Radiat Isot, 2000, no. 52, pp. 165–73. doi: 10.1016/s0969-8043(99) 00133-5