ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Geoekologiya, 2021, Vol. 3, P. 29-43

ISOTOPIC, HYDROLOGICAL AND HYDROCHEMICAL INDICATORS OF SUBMARINE GROUNDWATER DISCHARGE IN THE ESTUARY OF RAZDOLNAYA RIVER (AMURSKY BAY, SEA OF JAPAN) IN THE ICE COVERED PIRIOD 

P. Yu.  Semkina*, P. Ya. Tishchenkoa, A. N. Charkina, G. Yu. Pavlovaa, E. V. Anisimovaa, Yu. A. Barabanshchikova, T. A. Mikhailika,b, E. Yu. Tibenkoa, P. P. Tishchenkoa, M. G. Shvetsovaa, E. M. Shkirnikovaa

 

aIl'ichev Pacific Oceanological Institute, Far East Branch, Russian Academy of Sciences,

ul. Baltiiskaya, 43, Vladivostok, 690041 Russia

bSt. Petersburg branch, VNIRO (GosNIORKH named after L.S. Berg) nab. Makarova, 26, St. Petersburg, 199053 Russia

* E-mail: pahno@list.ru

 

Geochemical, hydrological and hydrochemical studies of the water in the Razdolnaya River Estuary and the upper aquifer were made in the ice covered period of 2020. Submarine groundwater (SGD) was discovered on the basis of the activity of radionuclides 224Ra at a distance of 22 km from the mouth river bar. In the groundwater and in the SGD region of estuary, the isotopic composition of water δ18O and δD and the ratio of major ions of water were similar of the sea water. The direct current with a velocity of up to 15 cm/s predominates. High activity of 224Ra in the range of 11.1 ± 0.1 to 2.2 ± 0.05 Bq/m3 and a height water temperature – plus 1.1°C in the bottom layer of the estuary indicate the flow of the saline water from the SGD area to the Amursky Bay. According to the measurements performed in 2014, the temperature increased to 2.5°C in the area of SGD influence during the winter season. The ice thickness decreased along the mixing zone to 20 cm (the ice thickness outside the mixing zone was 90 cm). A decrease in the oxygen saturation and a response in the ratios of the main nutrients were observed in the SGD area of the Razdolnaya Estuary. The main reason for SGD is the intrusion of sea water into the uppermost aquifer and its infiltration through sediments in the reach of river.

 

Keywords: 224Ra, δ18O and δD isotopes, submarine groundwater discharge (SGD), estuary, mixing zone, dissolved oxygen, nutrients, major ions of water

 

REFERENCES

1. Vazhova, A.S., Zuenko, Yu.I. Osobennosti raspredeleniya biogennykh elementov vdol' gradienta solenosti v estuariyakh rek Sukhodol i Razdol'naya (zaliv Petra Velikogo, Yaponskoe more) [Distribution of nutrients along the salinity gradient in the estuaries of the Sukhodol and Razdolnaya rivers (Peter the Great Bay, Sea of Japan)]. Izvestiya TINRO, 2015, vol. 180, pp. 226–235. (in Russian)

2. Gomoyunov, K.A. Gidrologicheskii ocherk Amurskogo zaliva i reki Suifuna [Hydrological studies of the Amur Bay and the Suifuna River]. Proizvoditel'nye sily Dal'nego Vostoka. Tr. 1 konf [Productive forces of the Far East. Proc. 1st Conf.]. Vladivostok, 1927, no. 2, pp. 73–91. (in Russian)

3. Zvalinskii, V.I., Nedashkovskii, A.P., Sagalaev, S.G. et al. Biogennye elementy i pervichnaya produktsiya estuariya reki Razdol'noi (Amurskiyzaliv, Yaponskogomorya) [Nutrients and primary production of the estuary of the Razdolnaya River (Amur Bay, Sea of Japan)]. Biologiyamorya, 2005, vol. 31, no. 2, pp. 107–116. (in Russian)

4. Zvalinskii, V.I., Mar'yash, A.A., Tishchenko, P.Ya et al. Produktsynnye kharakteristiki estuariya reki Razdol'noi v period ledostava [Production patterns in the estuary of the Razdolnaya River in period of freezing]. Izvestiya TINRO, 2016, vol. 185, pp. 155–174. (in Russian)

5. Kondratyeva, L.M., Andreeva, D.V., Utkina, A.S. Izmeneniye sostava organicheskikh veshchestv v podzemnykh vodakh v zone rechnoi fil'tratsii posle navodneniya [Change in the composition of organic substances in groundwater in the river filtration zone after a flood]. Geoekologiya, 2018, no. 6, pp. 21–30. (in Russian)

6. Metody gidrokhimicheskikh issledovanii osnovnykh biogennykh elementov [Methods of hydrochemical studies of nutrients]. Moscow, VNIRO, 1988, 120 p. (in Russian)

7. Mnogoletnie dannye o rezhime i resursakh poverkhnostnykh vod sushi [Long-term data on the regime and resources of land surface water]. Leningrad, Gidrometeoizdat, 1986, vol. 1. no. 21, 387 p. (in Russian)

8. Mikhailov, V.N. Gidrologicheskie protsessy v ust'yakh rek [Hydrological processes in river mouths]. Moscow, GEOS, 1997, 176 p. (in Russian)

9. Mikhailov, V.N., Gorin, S.L. Novye opredeleniya, rayonirovaniye i tipizatsiya ust'yevykh oblastei rek i ikh chastei – estuariev [New definitions, regionalization and typification of estuarine areas of rivers and their parts – estuaries]. Vodnye resursy, 2012, vol. 39, no. 3, pp. 243–257. (in Russian)

10.  Pavlova, G.Yu., Tishchenko, P.Ya., Khodorenko, N.D. et al. Osnovnoi solevoi sostav i karbonatnoe ravnovesie v porovoi vode osadkov estuariya reki Razdol'noi (Amurskii zaliv, Yaponskoye more) [The main salt composition and carbonate equilibrium in pore water of sediments of the estuary of the Razdolnaya River (Amur Bay, Sea of Japan)]. Tikhookeanskaya geologiya, 2012, vol. 31, no. 3, pp. 69–80. (in Russian)

11. Pavlova, G.Yu., Tishchenko, P.Ya., Mikhailik, T.A. et al. Gidrokhimicheskii rezhim estuariya reki Razdol'noi (Amurskii zaliv, Yaponskoye more) [Hydrochemical regime of the estuary of the Razdolnaya River (Amur Bay, Sea of Japan)]. Voda: khimiya i ekologiya, 2014, no. 12 (78), pp. 16–25. (in Russian)

12. Semkin, P.Yu., Tishchenko, P.Ya., Lobanov, V.B. et al. Struktura i dinamika vod v estuarii reki Partizanskoi (Yaponskoye more) [Water structure and dynamics in the estuary of the Partizanskaya River (Sea of Japan)]. Vodnye resursy, 2019, vol. 46, no. 1, pp. 24–34. (in Russian)

13. Semkin, P.Yu., Tishchenko, P.Ya., Lobanov, V. B. et al. Obmen vod v estuarii reki Razdol'noi (Amurskii zaliv, Yaponskoe more) v period ledostava [Water exchange in the estuary of the Razdolnaya River (Amursky Bay, Sea of Japan) during the ice covered period]. Izvestiya TINRO, 2019, vol. 196, pp. 123–137. (in Russian)

14. Simonov, A.I. Gidrologiya i gidrokhimiya ust'yevogo vzmor'ya [Hydrology and hydrochemistry of the estuary]. Moscow, Gidrometeoizdat, 1969, 230 p. (in Russian)

15. Tishchenko, P.Ya., Wong, C.Sh., Volkova, T.I. et al. Karbonatnaya sistema estuariya reki Razdol'noi (Amurskii zaliv Yaponskogo morya) [Carbonate system of the Razdolnaya River estuary (Amur Bay, Sea of Japan)]. Biologiya morya, 2005, vol. 31, no. 1, pp. 51–60. (in Russian)

16. Tishchenko, P.Ya., Semkin, P.Yu., Tishchenko, P.P. et al. Gipoksiya pridonnykh vod estuariya reki Razdol'naya [Hypoxia of bottom waters of the estuary of the Razdol'naya River] Doklady Akademii nauk, 2017, vol. 476, no. 5, pp. 576–580. (in Russian)

17. Tishchenko, P.Ya., Semkin, P.Yu., Pavlova, G.Yu. et al. Gidrokhimiya estuariya reki Tumannoi (Yaponskoye more) [Hydrochemistry of the estuary of the Tumannaya River (Sea of Japan)]. Okeanologiya, 2018, vol. 58, no. 2, pp. 192–204. (in Russian)

18. Ferronskii, V.I., Polyakov, V.A. Izotopiya gidrosfery Zemli [Isotopes in the Earth's hydrosphere]. Moscow, Nauchnyi mir Publ., 2009, 632 p. (in Russian)

19. Charkin, A.N., Dudarev, O.V., Salyuk, A.N. et al. Korotkozhivushchie izotopy224Ra i223Ra v sisteme reka Anadyr' – Beringovo more [Short-lived isotopes 224Ra and 223Ra in the Anadyr River - Bering Sea system]. Doklady Akademii nauk, 2017, vol. 476, no. 1, pp. 51–54. (in Russian)

20. Chelnokov, G.A., Kharitonova, N.A., Zykin, N.N., Vereshchagina, O.F. Genezis podzemnykh mineral'nykh vod Razdol'nenskogo proyavleniya (Primorskii kray) [Genesis of the mineral groundwater of the Razdol'nenskii occurrence in Primorye]. Tikhookeanskaya geologiya, 2008, vol. 27, no. 6, pp. 65–72. (in Russian)

21. Anderson, M.P. Heat as a ground water tracer. Ground Water, 2005, vol. 43, no. 6, pp. 951–968.

22. Arndt, S., Jørgensen, B.B., La Rowe, D.E. et al. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth-Science Reviews, 2013, vol. 123, pp. 53–86.

23. Burnett, W. C., Aggarwal, P. K., Aureli, A. et al. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Science of The Total En., 2006, vol. 367, iss. 2–3, pp. 498–543.

24. Craig, H. Isotopic variations in meteoric waters. Science, 1961, vol. 133, no. 3465, pp. 1702–1703.

25. Funahashi, Т., Kasai, А., Ueno, M., Yamashita, Y. Effects of short time variation in the river discharge on the salt wedge intrusion in the Yura estuary, a micro tidal estuary, Japan. Journal of Water Resource and Protection, 2013, vol. 5, pp. 343–348.

26. Guo, X., Xu, B., Burnett, W.C. et al. Does submarine groundwater discharge contribute to summer hypoxia in the Changjiang (Yangtze) River Estuary? Science of The Total Environment, 2020, vol. 719:137450. DOI:10.1016/j.scitotenv.2020.137450

27. Guide to best practices for ocean CO2 measurements. A.G. Dickson, C.L. Sabine, J.R. Christian, Eds., PICES Special Publication, 2007. 191 p.

28. Jakobsen, R., Postma, D. In situ rates of sulfate reduction in an aquifer (Rømø, Denmark) and implications for the reactivity of organic matter. Geology, 1994, vol. 22, no. 12, pp. 1101–1106.

29. Larsen, F., Tran, L., Van Hoang, H. et al. Groundwater salinity influenced by Holocene seawater trapped in incised valleys in the Red River delta plain. Nature Geoscience, 2017, vol. 10, pp. 376–381.

30. Luo, X., Jiao, J.J. Submarine groundwater discharge and nutrient loadings in Tolo Harbor, Hong Kong using multiple geotracer-based models, and their implications of red tide outbreaks. Water Research, 2016, vol. 102, pp. 11–31.

31. Luo, X., Jiao, J.J., Moore, W.S. et al. Significant chemical fluxes from natural terrestrial groundwater rival anthropogenic and fluvial input in a large-river deltaic estuary. Water Research, 2018, vol. 144. pp. 603–615.

32. Moore, W.S. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature, 1996, vol. 380, pp. 612–614.

33. Moore, W.S. The subterranean estuary: a reaction zone of ground water and sea water. Marine Chemistry, 1999, vol. 65, no. 1–2, pp. 111–125.

34. Moore, W.S. The effect of submarine groundwater discharge on the ocean. Annual Review of Marine Science, 2010, vol. 2, pp. 59–88.

35. Moore, W. S., Arnold R. Measurement of 223Ra and 224Ra in coastal waters using delayed coincidence counter. Journal of Geophysical Research, 1996, vol. 101, pp. 1321–1329.

36. Parizi, E., Hosseini, S.M., Ataie-Ashtiani, B., Simmons, C.T. Vulnerability mapping of coastal aquifers to seawater intrusion: review, development and application. Journal of Hydrology, 2019, vol. 570, pp. 555–573.

37. Regnier, P., Dale, A.W., Arndt, S., et al. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: a modeling perspective. Earth-Science Reviews, 2011, vol. 106, no. 1, pp. 105–130.

38. Seawater intrusion in coastal aquifers – concepts, methods and practices. J. Bear., Cheng A.H.-D, S. Sorek, D. Ouazar, I. Herrera, Eds. The Netherlands, Kluwer Academic Publishers, Dordrecht. 1999. 625 p.

39. Shulkin, V.M., Tishchenko, P.Ya., Semkin, P.Yu., Shvetsova, M.G. Influence of river discharge and phytoplankton on the distribution of nutrients and trace metals in Razdolnaya River estuary, Russia. Estuarine, Coastal and Shelf Science, 2018, vol. 211, pp. 166–176.

40. Spiteri, C., Van Cappellen, P., Regnier, P. Surface complexation effects on phosphate adsorption to ferric iron oxyhydroxides along pH and salinity gradients in estuaries and coastal aquifers. Geochim. et Cosmochim. Acta, 2008, vol. 72, pp. 3431–3445.

41. Shen Y., Xin P., Yu X. Combined effect of cutoff wall and tides on groundwater flow and salinity distribution in coastal unconfined aquifers // Journal of Hydrology. 2020. V. 581. DOI:10.1016/j.jhydrol.2019.124444

42. Taniguchi, M., Burnett, W.C., Cable, J. E., Turner, J.V. Investigation of submarine groundwater discharge. Hydrological Processes, 2002, vol. 16, pp. 2115–2129.

43. Watanabe, K., Kasai, A., Antonio, E.S. et al. Influence of salt-wedge intrusion on ecological processes at lower trophic levels in the Yura Estuary, Japan. Estuarine, Coastal and Shelf Science, 2014, vol. 139, pp. 67–77.

44. Wang, X., Baskaran, M., Su K., Du, J. The important role of submarine groundwater discharge (SGD) to derive nutrient fluxes into River dominated Ocean Margins – The East China Sea. Marine Chemistry, 2018, vol. 204, pp. 121–132.

45. Wang, Y., Jiao, J.J. Origin of groundwater salinity and hydrogeochemical processes in the confined Quaternary aquifer of the Pearl River Delta, China. Journal of Hydrology, 2012, vol. 438, pp. 112–124.