Geoekologiya, 2022, Vol. 3, P. 38-50


L. M. Kondratyeva1, Z. N. Litvinenko1*, D.V. Andreeva1, Е.М. Golubeva2

1Institute of Water and Ecology Problems, Far Eastern Branch, Russian Academy of Sciences, ul. Dikopol’tseva, 56, Khabarovsk, 680000 Russia

2 Kosygin Institute of Tectonics and Geophysics, Far Eastern Branch, Russian Academy of Sciences, ul. Dikopol’tseva 56, Khabarovsk, 680000 Russia

*E-mail: zoyana2003@mail.ru 


Water composition in different tributaries of the Bureya River (Far East) under influence of geoecological processes of organic carbon transformation were studied in the active layer of biosphere in the permafrost zone. In the permafrost zone, carbon reserves are concentrated, and upon climate change it can be mobilized and converted into greenhouse gases. Microbial processes are an important mechanism of its transformation. The purpose of the study was to assess comprehensively the composition of surface water in the tributaries of the Bureya River in swampy areas (marshes) depending on the permafrost depth with use a spectrophotometric method for determining the composition of dissolved organic matter (DOM) and experiments on the activity of microbial complexes in the active layer in relation to humic substances. The microbial complexes of the active layer and the depth of the permafrost horizon played a decisive role in DOM composition. It has been experimentally shown that at the same temperature the qualitative composition of DOM in watercourses during the thawing of permafrost can differ significantly.

Keywords: water composition, permafrost, active layer, microbial complexes, humic substances


  1. Mordovin, A.M., Shesterkin, V.P., Antonov, A.L. Reka Bureya: gidrologiya, gidrokhimiya, ikhtiofauna [The Bureya River: hydrology, hydrochemistry, and ichthyofauna]. Khabarovsk, DVO RAN, 2006, 149 p. (in Russian)
  2. Murashova, E.G. Zabolachivanie v Priamur’e [Bogging in Amur region]. Stroitel’stvo i prirodoobustroistvo [Construction and nature management]. Blagoveshchensk, DV GAU Publ., 2016, pp. 72-75. (in Russian)
  3. Namsaraev, B.B., Barkhutova, D.D., Khasinov, V.V. Polevoi praktikum po vodnoi mikrobiologii i gidrokhimii [Field training guide in water microbiology and hydrochemistry]. Ulan-Ude, BGU Publ., 2006, 68 p. (in Russian)
  4. Namsaraev, B.B., Khakhinov, V.V., Turunkhaev, A.V. Bolotnye ekosostemy peresheika poluostrova Svyatoi Nos [Bog ecosystems of the Svyatoi Nos Peninsula Isthmus]. Geografiya i prirodnye resursy, 2009, no. 4, pp. 66–71. (in Russian)
  5. Novorotskii, P.V. Mnogoletnee izmenenie temperatury vozdukha v basseine reki Bureya [Perennial variation in the air temperature in the Bureya River basin].  Geografiya i prirodnye resursy, 2013, no. 2, pp. 118-124. (in Russian)
  6. Shesterkin, V.P. Gidrokhimiya reki Tyrma [The Tyrma River hydrochemistry]. Regional’nye problem, 2021, vol. 24, nos. 2-3, pp. 47-51.(in Russian)
  7. Shesterkina, N.M., Talovskaya, V.S., Ri, T.D., Shesterkin, V.P. Gidrokhimiya pritokov Bureiskogo vodokhranilishcha [Hydrochemistry of Bureya water reserve tributaries]. Presnovodnye ekosistemy basseina reki Amur [Fresh water ecosystems of the Amur River basin]. Vladivostok, Dal’nauka Publ., 2008, pp. 18-27. (in Russian)
  8. Shirshova, L.T., Gilichinskii, D.A., Ostroumova, N.V., Ermolaev, A.M. Primenenie spektrofotometrii dlya opredeleniya soderzhaniya guminovykh veshchestv v mnogoletnemerzlykh otlozheniyakh [Application of spectrophotometry for the determination of humic substances in permafrost deposits]. Kriosfera Zemli, 2015, vol. XIX, no. 4, pp. 107–113. (in Russian)
  9. Bagard, M.L., Chabaux, F., Pokrovsky, O.S., Viers, J., Prokushkin, A.S., Stille, P., Rihs, S., Schmitt, A., Dupré, B. Seasonal variability of element fluxes in two Central Siberian rivers draining high latitude permafrost dominated areas. Geochim. Cosmochim. Acta, 2011, no. 75, pp.  3335–3357.
  10. Balcarczyk, K.L., Jones, J.B., Jaffe, R., Maie, N. Stream dissolved organic matterbioavailability and composition in watersheds underlain with discontinuous permafrost. Biogeochemistry, 2009, no. 94, pp. 255–270.
  11. Deng, J., Gu, Y., Zhang, J., Xue, K., Qin, Y., et al. Shifts of tundra bacterial and archaeal communities along a permafrost thaw gradient in Alaska. Molеcular Ecology, 2015, vol. l, no. 24 (1), pp. 222-234.
  12. Exley, C.A. Biogeochemical cycle for aluminium? Journal of Inorganic Biochemistry, 2003, vol. 397, pp. 1–7.
  13. Frey, K.E., McClelland, J.W. Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol. Process, 2009, vol. 23, pp. 169–182.
  14. Hansen, A.A., Herbert, R.A., Mikkelsen, K., Jensen, L.L., Kristoffersen, T., et al. Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway. Environmental microbiology, 2007, vol. 9(11), pp. 2870–2884.
  15. Hebsgaard, M.B., Phillips, M.J., Willerslev, E. Geologically ancient DNA: fact or artefact? Trends Microbiol., 2005, vol. 13, pp. 212–220.
  16. Herndon, E.M., Yang, Z., Bargar, J., Janot, N., Regier, T.Z., et al. Geochemical drivers of organic matter decomposition in arctic tundra soils. Biogeochemistry, 2015, no.126, pp.  397–414.
  17. Kumar, S. Organic chemistry. Spectroscopy of Organic Compounds. Department of Chemistry, Guru Nanak Dev University, 2006, pp. 1–36. 
  18. Laglera, L.M., Vandenberg C.M.G. Evidence for geochemical control of iron by humic substances in seawater. Limnol. Oceanogr., 2009, vol. 54, pp. 610–619. doi.org/10.4319/lo.2009.54.2.0610
  19. Lee, B.M., Seo, Y.S., Hur, J. Investigation of adsorptive fractionation of humic acid on graphene oxide using fluorescence EEM-PARAFAC. Water research, 2015, vol. 73, pp. 242–251. doi.org/10.1016/j.watres.2015.01.020
  20. Lipson, D.A, Zona, D., Raab, T.K., Bozzolo, F., Mauritz, M., Oechel, W.C. Water-table height and microtopography control biogeochemical cycling in an Arctic coastal tundra ecosystem. Biogeosciences, 2012, vol. 9, pp. 577–591. doi.org/10.5194/bg-9-577-2012
  21. MacDonald, E.N., Tank, S.E., Kokelj, S.V., Froese, D.G., Hutchins, R.H.S. Permafrost-derived dissolved organic matter composition varies across permafrost end-members in the western Canadian Arctic. Environmental Research Letters, 2021, vol. 16, no. 2, e024036. doi.org/10.1088/1748-9326/abd971
  22. Nishioka, J., Nakatsuka T., Ono K., Volkov Y.N., Scherbinin A., Shiraiwa, T. Quantitative evaluation of iron transport processes in the Sea of Okhotsk. Prog. Oceanogr., 2014, vol. 126, pp. 180–193. doi.org/10.1016/j.pocean.2014.04.011
  23. Olefeldt, D., Persson, A., Turetsky, M.R. Influence of the permafrost boundary on dissolved organic matter characterstics in rivers within the Boreal and Taiga Plains of western Canada. Environmental Research Letters, 2014, vol. 9, no. 3, 035005. doi.org/10.1088/1748-9326/9/3/035005
  24. Perminova, I.V. From green chemistry and nature-like technologies towards ecoadaptive chemistry and technology. Pure and Applied Chemistry, 2019, vol. 91, no. 5, pp. 851–864. doi.org/10.1515/pac-2018-1110
  25. Pokrovsky, O.S., Manasypov R.M., Loiko S.V., Krickov I.A., Kopysov S.G., Kolesnichenko L.G., Vorobyev S.N., and Kirpotin S.N. Trace element transport in western Siberian rivers across a permafrost gradient. Biogeosciences, 2016, vol. 13, pp. 1877–1900. doi.org/10.5194/bg-13-1877-2016
  26. Quinton, W.L., Hayashi, M., Chasmer, L.E. Peatland hydrology of discontinuous permafrost in the Northwest Territories: overview and synthesis. Can. Water Resour. J., 2009, vol. 34, pp. 311–328. doi.org/10.4296/cwrj3404311
  27. Rivkina,  E., Laurinavichius  K., McGrath J., Tiedje  J., Shcherbakova,  V., Gilichinsky, D. Microbial life in permafrost. Adv. Space Res., 2004, vol. 33, pp. 1215–1221. doi.org/10.1016/j.asr.2003.06.024
  28. Roehm, C.L., Giesler R., Karlsson J. Bioavailability of terrestrial organic carbon to lake bacteria: the case of a degrading permafrost mire complex. J. Geophys. Res., 2009, vol. 114, G03006. doi.org/10.1029/2008JG000863
  29. Schlesinger, W.H., Bernhardt E. Biogeochemistry. An analysis of global change. Academic Press. 3rd Edition, 2013, p. 688.
  30. Schumann, R., Schiewer U., Karsten U., Rieling T. Viability of bacteria from different aquatic habitats. II. Cellular fluorescent markers for membrane integrity and metabolic activity. Aquat. Microb. Ecol., 2003, vol. 32, pp. 137–150. doi.org/10.3354/ame032137
  31. Schuur, E.A.G., McGuire, A.D., Schädel, C., Grosse, G., Harden, J.W., et al. Climate change and the permafrost carbon feedback. Nature, 2015, vol. 520, pp. 171–179. doi.org/10.1038/nature14338
  32. Steven, B., Briggs, G., Mckay, C.P., Pollard, W.H., Greer, C.W., Whyte, L.G. Characterization of the Microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol. Ecol., 2007, vol. 59, pp. 513–523. doi.org/10.1111/j.1574-6941.2006.00247.x
  33. Tashiro, Y., Yoh M., Shiraiwa T., Onishi T., Shesterkin V., Kim V. Seasonal Variations of Dissolved Iron Concentration in Active Layer and Rivers in Permafrost Areas, Russian Far East. Water, 2020, vol.12, 2579. doi.org/10.3390/w12092579
  34. Tfaily, M.M., Hamdan, R., Corbett, J.E., Chanton, J.P., Glaser, P.H., Cooper, W.T. Investigating dissolved organic matter decomposition in northern peatlands using complimentary analytical techniques. Geochim. Cosmochim. Acta, 2013, vol. 112, pp. 116–29. doi.org/10.1016/j.gca.2013.03.002
  35. Vishnivetskaya, T., Petrova, M.A., Urbance, J., Ponder, M., et al. Bacterial community in ancient Siberian permafrost as characterized by culture and culture-independent methods. Astrobiology, 2006, vol. 6, pp. 400–414. doi.org/10.1089/ast.2006.6.400
  36. Wauthy, M., Rautio, M., Christoffersen, K.S., Forsström, L., Laurion, I., et al. Increasing dominance of terrigenous organic matter in circumpolar freshwaters due to permafrost thaw. Limnol. Oceanogr. Lett., 2018, vol.3, no.3, pp. 186–198. doi.org/10.1002/lol2.10063
  37. Wickland, K.P., Waldrop, M.P., Aiken, G.R., Koch, J.C., Jorgenson, M.T., Striegl, R.G. Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska. Environ. Res. Lett., 2018, vol. 13, е065011. doi.org/10.1088/1748-9326/aac4ad