ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Geoekologiya, 2019, Vol. 6, P. 94-105

EVALUATION OF AERIAL TECHNOGENIC POLLUTION NEAR INDUSTRIAL ENTERPRISES IN THE TUNDRA ZONE (BY THE EXAMPLE OF VORKUTA CITY)

© 2019 M. I. Vasilevich¹·*, R. S. Vasilevich¹, D. N. Gabov¹, B. M. Kondratenok¹
¹
Institute of Biology, Komi Scientific Center, the Urals Branch of the Russian Academy of Sciences,
ul.Kommunisticheskaya 28, Syktyvkar, Komi Republic, 167982 Russia
*E-mail:
mvasilevich@ib.komisc.ru

The quantitative chemical analysis of snow cover has been carried out for the Vorkuta agglomeration territory. The on-site ingress of pollutants in close proximity to industrial enterprises in Vorkuta is calculated. The schematic maps of substance distribution in snow in the studied area are built using space images. The control levels of aerotechnogenic pollution are established for the city, industrial zones and adjacent territories for the purpose of subsequent ecological monitoring. The pH value of snowmelt water reaches 6.5-7.2 due to a high content of alkaline components (calcium and magnesium carbonates) in snow. The snow cover of the Vorkuta agglomeration is highly enriched with heavy metals. The maximum permissible concentrations are exceeded for manganese, nickel, aluminum, vanadium, molybdenum and mercury. High concentrations of mercury in snow are supposedly related to coal combustion at the thermal power plant. After that mercury may be occluded on a surface of coal particles and ashes. It is shown that it is possible to establish the zones of the greatest aerogenic impact according to the content of mercury and vanadium in the snow. Factor analysis was used to identify the mechanisms of pollutants and factors forming the chemical composition of the snow cover. The share of elements in the suspended solids is more than 60% of their total content in snowmelt water. High concentrations of suspended particles (up to 720 mg/dm3) were observed in the snow of Vorkuta. The most severe pollution of the snow cover is registered in close proximity to thermal power plant №2. According to the calculations of the total pollution index, the highest excess of substance increment over the background level was noted in the sanitary protection zone around the thermal power plant №2. Keywords: snow, aerogenic pollution, tundra zone, Vorkuta agglomeration, ecological and chemical monitoring.

DOI: https://doi.org/10.31857/S0869-78092019694-105

REFERENCES

1. Vasilevich, M.I., Beznosikov, V.A., Kondratenok, B.N. Khimicheskii sostav snezhnogo pokrova na territorii taezhnoi zony Respubliki Komi [Chemical composition of snow cover in the taiga zone of the Komi Republic]. Vodnye resursy, 2011, vol. 38, no. 4, pp. 494-506. (in Russian)

2. Vasilevich, M.I., Shchanov, V.M., Vasilevich, R.S. Primenenie sputnikovykh metodov issledovanii pri otsenke zagryazneniya snezhnogo pokrova vokrug promyshlennykh predpriyatii v tundrovoi zone [Application of satellite research methods in the assessment of snow cover pollution around industrial enterprises in the tundra zone]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2015, vol. 12, no. 2, pp. 50-60. (in Russian)

3. Vasilenko, V.N., Naumov, I.M., Fridman, Sh.D. Monitoring zagryazneniya snezhnogo pokrova [Monitoring of snow cover pollution]. Leningrad, Gidrometeoizdat, 1985, 181 p. (in Russian)

4. Vinogradova, A.A. Atmosfernyi perenos antropogennykh primesei v Tsentral'nuyu chast' Rossiiskoi Arktiki [Atmospheric transport of anthropogenic impurities to the Central part of the Russian Arctic]. Ekologicheskaya khimiya, 1996, no. 5(1), pp. 3-10. (in Russian)

5. Vorkuta - gorod na ugle, gorod v Arktike: Nauch.-populyar. izdanie [Vorkuta is a city on the coal, a city in the Arctic]. Getsen, M.V., Ed., Syktyvkar, Resp. ekologich. Tsentr RK, 2004, 352 p. (in Russian)

6. Gabov, D.N., Yakovleva, E.V., Vasilevich, M.I., Vasilevich, R.S. Nakoplenie politsiklicheskikh aromaticheskikh uglevodorodov v snezhnom pokrove vblizi predpriyatii toplivno-energeticheskogo kompleksa vokrug g.Vorkuta [Accumulation of polycyclic aromatic hydrocarbons in the snow cover near the enterprises of fuel and energy complex around Vorkuta]. Geoekologiya, 2019, no. 1, pp. 24-37. (in Russian)

7. Getsen, M.V., Stenina, A.S., Khokhlova, L.G., Rusanova, G.V., et al. Sostoyanie prirodnoi sredy Bol'shezemel'skoi tundry na territorii Vorkutinskogo promyshlennogo raiona [The state of the natural environment of the Bolshezemelskaya tundra in the territory of the Vorkuta industrial district]. Narodnoe khozyaistvo Respubliki Komi. 1994, vol. 3, no. 1, pp. 68-75. (in Russian)

8. Getsen, M.V., Patova, E.N., Kulyugina, E.E., Istomina L.N., et al. Transformatsiya prirodnoi sredy tundry v usloviyakh otkrytoi dobychi uglya [The transformation of the natural tundra environment upon open coal mining]. Sever: arkticheskii vektor sotsial'no-ekologicheskikh issledovanii. Syktyvkar, 2008, pp. 183- 196. (in Russian)

9. Ladonin, D.V. Konkurentnye vzaimootnosheniya ionov pri zagryaznenii pochvy tyazhelymi metallami [Competitive relationships of ions in soil contamination with heavy metals]. Pochvovedenie, 2000, no. 10, pp.1285-1293. (in Russian)

10. Punanova, S.A. Osobennosti nakopleniya v neftidakh vanadiya i nikelya [Specific features of vanadium and nickel accumulation in oil]. Aktual'nye problemy nefti i gaza, 2018, no. 3 (22), pp.1-13.

11. Sokolov, Yu.I. Arktika: k probleme nakoplennogo ekologicheskogo ushcherba [The Arctic: the problem of accumulated environmental damage]. Arktika: ekologiya i ekonomika, 2013, no. 2 (10), pp. 18–27. (in Russian).

12. Umland, F., Yansen, A, Tirig, D., Vyunsh, G. Kompleksnye soedineniya v analiticheskoi khimii. Teoriya i praktika primeneniya. [Complex compounds in analytical chemistry. Theory and practice of application.]. Moscow, Khimiya, 1975, 532 p. (in Russian).

13. Shamrikova, E.V., Vanchikova, E.V., Ryazanov, M.A., Kazakov, V.G. Sostoyanie snezhnogo i pochvennogo pokrova vblizi tsementnogo zavoda [State of snow and soil cover near the cement plant]. Voda: khimiya i ekologiya, 2010, no. 10, pp. 46-51. (in Russian)

14. Shevchenko, V.P., Lisitsyn, A.P., Vinogradova, A.A., Smirnov, V.V., Serova, V.V., Shtain, R. Aerozoli Arktiki – rezul'taty desyatiletnikh issledovanii [Arctic aerosols as the results of ten-year-long studies]. Optika atmosfery i okeana, 2000, no. 6–7, pp. 551-575. (in Russian)

15. Yudovich, Ya.E., Zolotova, V.V. Elementy primesi v uglyakh Pechorskogo basseina [Trace elements in coals of the Pechora basin]. Narodnoe khozyaistvo Respubliki Komi. 1994, vol. 3, no. 1, pp. 16-26. (in Russian)

16. Capri, A. Mercury from combustion sources: A review of the chemical species emitted and their transport in the atmosphere. Water Air Soil Pollution, 1997, vol. 98, no. 3, pp. 241-254.

17. Chiardia, M., Cupelin, F. Gas-to-particle conversion of mercury, arsenic and selenium, trough reactions with traffic-related compounds (Geneva). Indication from lead isotopes. Atmospheric Environment, 2000, vol. 34, pp. 327-332.

18. Devyatova, A.Y., Yurkevich, N.V., Raputa, V.F. Predictive models of air pollution from anthropogenic sources by the snow cover study. Proc. of the 3rd International CEMEPE & SECOTOX Conference. Skiathos, June 19-24, 2011.

19. Kokhanovsky, A. Spectral reflectance of solar light from dirty snow: a simple theoretical model and its validation. Cryosphere, 2013, no. 7, pp. 1325-1331.