ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Geoekologiya, 2021, Vol. 6, P. 55-67

CHEMICAL COMPOSITION AND METAL SPECIATION IN WATER NEAR THE MINE «LUPIKKO-I» (PITKYARANTA MINING DISTRICT, KARELIA)

A. A. Konyshev1,*, E. S. Sidkina1,**, E. A. Soldatova1, E. V. Cherkasova1, I. A. Bugaev1,
A. S. Toropov2, D. N. Dogadkin1, I. N. Gromyak1, I. Yu. Nikolaeva2

 

1Vernadsky Institute of Geochemistry and Analytical Chemistry RAS, ul. Kosygina, 19, Moscow,119991 Russia

2Lomonosov Moscow State University, Leninskie gory, 1, Moscow,119991 Russia

*E-mail: icelopa@gmail.com
**E-mail: sidkinaes@yandex.ru

 

The study aims to consider the behavior of chemical elements in waters exposed to the mine "Lupikko-I" (Pitkyaranta mining district, Karelia) focusing in particular on ore metal speciation and the forms of their immobilization. The mine "Lupikko-I" was exploited for iron ore extraction. The authors attempt to establish the relationship between the Ristioya River water and the waters that eroded the mine dumps since the local runoff seriously influences river runoff formation. For this purpose, the water samples were taken from the mine “Lupikko-I” (from the water surface and the depth of 2 m), a trial pit and pond within the mine dumps, and the Ristioya River. In addition to the water samples, two samples of sediments were taken from the trial pit and pond bottom. The water samples were analyzed using titration, high-temperature catalytic oxidation, ICP-MS, and ICP-AES. The sediment samples were analyzed by ICP-MS after acid digestion.The thermodynamic model of element speciation and secondary mineral formation was developed in the software package Hydrogeo guided by the principle of equilibrium modeling. The results show high contents of Fe, Zn, Ni, Co, Sr, Cd, and U in the waters connected with the mine “Lupikko-I”and its dumps relative to the values of the geochemical background. The maximum concentrations of these metals are found in the water sampled from the trial pit, while the highest concentrations in bottom sediments are determined for the pond. In the river waters, the concentrations of metals are much lower. The studies show that surface runoff enters a pond with stagnant water after the active mineral dissolution in the mine dumps by precipitation under atmospheric oxygen influence. Studied metals are immobilized in the pond bottom sediments due to the formation of secondary minerals or sorption. It can be concluded that the pond serves as a receiver of the surface runoff connected with the mine dumps and reservoir for chemical processes of water self-purification. The effect of organic matter on the metal speciation water is the most pronounced for the Fe accumulation in the waters of the Lupikko mining area. Calcium, magnesium, and most of the considered trace elements (Mn, Zn, Cu, Cd, Ni, and Pb) show a lower affinity with humic substances.

Keywords: surface water, underspoil water, pollution, thermodynamic modeling, mine, fulvic acids, humic acids, humic substances, organomineral complexes, secondary minerals

REFERENCES

  1. Bukaty, M.B. Razrabotka programmnogo obespecheniya dlya resheniya gidrogeologicheskikh zadach [Development of software for solving hydrogeological problems]. Izvestiya Tomskogo politekhnicheskogo universiteta, 2002, vol. 305, iss. 6, pp. 348-365. (in Russian)
  2. Bulakh, A.G., Frank-Kamenetskii, V.A. Geologicheskaya ekskursiya v okrestnosti Pitkyaranty [Geological excursion in the vicinity of Pitkyaranta]. Petrozavodsk, Goskarelizdat Publ., 1961, 105 p. (in Russian)
  3. Bychkova, Ya.V., Starodymova, D.P., Shaikhutdinova, K.V., Dyagileva, D.R., et al. Osobennosti khimicheskoi podgotovki prob donnykh otlozhenii dlya mul'tielementnogo analiza metodom ISP-MS [Peculiarities of chemical preparation of bottom sediment samples for multi-element ICP-MS analysis]. Vestnik Moskovskogo universiteta. Seriya 4. Geologiya. 2020, vol. 4, pp. 45–54 (in Russian).
  4. Voloshin, A.V., Pakhomovskii, Ya.A. O stokezite iz granitnykh pegmatitov Kol'skogo p-ova i skarnoidov Karelii (Pitkranta) [About stokesite from granite pegmatites of the Kola Peninsula and skarnoids of Karelia (Pitkyaranta)]. In: Trudy Mineralogicheskogo Muzeya. Vypusk 35. Novy Dannye o Mineralakh SSSR. Moscow, Nauka Publ., 1998, pp. 36–39. (in Russian)
  5. Dukhovskii, A.A., Artamonova, N.A., Ivanova, E.I., Nikiforov, I.O. Ob'yomnaya model' Salminskogo massiva granitov rapakivi i zakonomernosti razmeshcheniya orudeneniya [Volumetric model of the Salminsky massif of rapakivi granites and patterns of mineralization distribution]. Otechestvennaya geologiia, 1994, vol. 4, pp. 24–32. (in Russian)
  6. Konyshev, A.A., Sidkina, E.S., Soldatova, E.A., Dogadkin, D.N., Gromyak, I.N. Features of chemical element behavior in the water-rock system of the rubble stone quarry in Pitkäranta district (Karelia). Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2021, vol. 332, pp. 7–19. doi: 10.18799/24131830/2021/3/3098. (in Russian)
  7. Larin, A.M. Granity rapakivi i assotsiiruyushchie porody [Rapakivi granites and associated rocks]. St.Petersburg, Nauka Publ., 2011, 402 p. (in Russian)
  8. Litvinenko, A.V., Bogdanova, M.S., Karpechko, V.A., Litvinova, I.A., Filatov, N.N.  Vodnye resursy Karelii: osnovnye problemy ratsional'nogo ispol'zovaniya i okhrany [Water resources of Karelia: main problems in rational use and protection]. Trudy Karel'skogo nauchnogo tsentra Rossiiskoi akademii nauk, 2011, no. 4, pp. 12–20. (in Russian)
  9. Litvinenko, A.V., Filatov, N.N., Lozovik, P.A., Karpechko, V.A. Regional'naya ekologiya: ekologo-ekonomicheskie osnovy ratsional'nogo ispol'zovaniya vodnykh resursov Karelii [Regional ecology: ecological and economic foundations of the rational use of water resources in Karelia]. Inzhenernaya ekologiya, 1998, vol.6, pp. 3–13. (in Russian)
  10. Metody geokhimicheskogo modelirovaniya i prognozirovaniya v gidrogeologii [Methods of geochemical modeling and forecasting in hydrogeology]. Krainov S.R., Ed. Moscow, Nedra Publ., 1988, 254 p. (in Russian)
  11. Nefedov, E.I. Berborit, novyi mineral [Berborite, a new mineral]. Doklady Akademii nauk SSSR. Seriya geologicheskaya, 1967, vol.174, pp. 189–192. (in Russian)
  12. Tomilina, O.V., Palamarchuk, S.F., Yakhnin, E.Ya., Egorov, A.I. Komplekt kart geokhimicheskoi osnovy gosudarstvennoi geologicheskoi karty Rossiiskoi Federatsii. [Set of maps of the geochemical basis of the state geological map of the Russian Federation.] Geokhimicheskoe kartirovanie severa evropeiskoi territorii Rossii v ramkakh mezhdunarodnoi programmy "Ekogeokhimiya Barentseva regiona" i provedenie operezhayushchego etapa sostavleniya geokhimicheskikh osnov Gosgeolkarty-1000 tret'ego pokoleniya na listy R-35,36 [Geochemical mapping of the European north of Russia within the framework of the international program "Ecogeochemistry of the Barents Region" and the advanced stage of compiling geochemical foundations of the third generation of State Geological Map-1000, sheets R-35,36], Vol. 2. Sci. Report. St.Petersburg, 2004, 146 p. (in Russian)
  13. Toropov, A.S., Soldatova, E.A., Rikhvanov, L.P.  Formy migratsii radionuklidov (U i Th) v prirodnykh vodakh v razlichnykh geokhimicheskikh usloviyakh na osnove raschetnykh i eksperimental'nykh dannykh [Forms of radionuclides (U and Th) migration in natural waters under different geochemical conditions based on computational and experimental data]. Izvestiya Tomskogo Polytekhnicheskogo univesiteta. Inzhiniring georesursov, 2020, vol. 331, pp. 7–21. doi: 10.18799/24131830/2020/12/2935. (in Russian)
  14. Courtijn, E., Vandecasteele, C., Dams, R. Speciation of aluminium in surface water. Sci. Total Environ., 1990, vol.90, pp. 191–202. doi: 10.1016/0048-9697(90)90193-X.
  15. Dinu, M.I., Shkinev, V.M. Complexation of metal ions with organic substances of humus nature: methods of study and structural features of ligands, and distribution of elements between species. Geochemistry Int., 2020, vol. 58, pp. 200–211. doi: 10.1134/S0016702920020032.
  16. Ephraim, J.H., Allard, B. Metal ion binding by humic substances. In: Modelling in Aquatic Chemistry.Grenthe I., Puigdomenech I., Eds. Paris, OECD, Nuclear Energy Agency, 1997, pp. 207–244.
  17. Jordan, R.N., Yonge, D.R., Hathhorn, W.E. Enhanced mobility of Pb in the presence of dissolved natural organic matter. J. Contam. Hydrol.,1997, vol. 29, pp. 59–80. doi: 10.1016/S0169-7722(96)00087-3.
  18. Konyshev, A.A., Sidkina, E.S., Cherkasova, E.V., Mironenko, M.V., Gridasov, A.G., Zhilkina, A.V., Bugaev, I.A. Migration forms of heavy metals and chemical composition of surface waters in the “Arsenic” shaft area (Pitkäranta Ore District, South Karelia). Geochemistry Int., 2020, vol. 58, pp. 1068–1074. doi: 10.1134/S0016702920090050.
  19. Larin, A.M. Ore mineralisation. In: Salmi Batholith and Pitkaranta Ore Field in Soviet Karelia / Haapala I., Ramo O.T., Salonsaari P.T., Eds. Espoo, Finland, University of Helsinki, 1991, pp. 19–34.
  20. Lepokurova, O.E., Ivanova, I.S. Geochemistry of iron in organogenic water of Western Siberia, Russia. Procedia Earth Planet. Sci., 2014, vol. 10, pp. 297–302. doi: 10.1016/j.proeps.2014.08.068.
  21. Rose, A.L., Waite T.D. Kinetics of iron complexation by dissolved natural organic matter in coastal waters. Mar. Chem., 2003, vol. 84, pp. 85–103. doi: 10.1016/S0304-4203(03)00113-0.
  22. Savichev, O., Soldatova, E., Rudmin, M., Mazurov, A. Geochemical barriers in oligotrophic peat bog (Western Siberia). Appl. Geochemistry, 2020, vol. 113, 104519. doi: 10.1016/j.apgeochem.2019.104519.
  23. Soldatova, E., Sidkina, E., Sun, Z. Thermodynamic modeling of aqueous migration of chemical elements in irrigation water. E3S Web Conf., 2020, vol. 222, 05022. doi: 10.1051/e3sconf/202022205022.
  24. Trüstedt, O. Die Erzlagerstätten von Pitkäranta am Ladoga-See. Bull. la Comm. Géologique Finlande, 1907, vol. 19, pp. 243–244. (in German)