ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Geoekologiya, 2018, Vol. 1, P. 79-88

THE ANALYSIS OF URBAN ECOSYSTEM STATE BY MACHINE LEARNING TOOLS

V.V. Rukavitsyn

Ordzhonikidze Russian State Geological Prospecting University, ul. Miklukho-Maklaya 23, Moscow, 117997 Russia. E-mail: vadichruk@list.ru

This work deals with the automation of ecosystem stability assessment. Until now, carrying out such assessment has been available only to high-class experts. The article presents practical description of using a technology of automation of forecasts making it possible to determine risks for the population residence in a particular area. The article also presents a constructed model of ecosystems stability in cities of Czech Republic. Model accuracy was more than 83%. This model can be applied at the cities construction and design of new residential and industrial quarters.

Keywords: modelling, ecosystem stability, machine learning, automation.

REFERENCES

1. Akimov, A.E., Tarasenko, V.Y., Shipov, G.I. Torsionnye polia kak kosmofizicheskii faktor [Torsion fields like a cosmophysical factor]. Biofizika, vol. 40, issue 4, Moscow, Nauka, 1995, pp. 12–19. (in Russian)

2. Bondarenko, Ya.I, Zayonts, I.O. Sozdanie mnogofak- tornykh kosmofotograficheskikh modelei prirodnogo riska khozyaistvennogo ispol’zovania territorii i prozhivania naseleniya na primere g. Kieva [Creation of multifactor models of the area’s economic use and the population living risk by the example of Kiev]. Problems of the environmental management, stable development and technological security, Dnepropetrovsk, Institute prirodopol’zovaniya i ekologii NAN Ukrainy, 2001, pp. 61–66. (in Russian)

3. Rukavitsyn, V.V., Ekzariyan, V.N. Metodika otsenki urovnya ustoichivosti ekosistem pri pomoshchi mashinnogo obuchenia [Procedure of ecosystem stability level assessment by machine learning tools]. Izvestiya vuzov. Ser. “Geologiya i razvedka”, no. 1, Moscow, 2015, pp. 38–42 (in Russian)

4. Congenital anomalies in births in Czech Republic. Available at: http://www.uzis.cz/en/catalogue/congenital-anomalies-births (Accessed 10.02.2016).

5. Shestopalov, V.M., Zayonts, I.O., Bondarenko, Ya.I., Strukturno-geodinamicheskoe i gidrogeologicheskoe raionorovanie s tseliyu vyyavleniya struktur naibolee perspektivnykh dlya glubinnoi izolyatsii RAO [Structural geodynamical and hydrogeological zoning for revealing geological structural perspectives for deep isolation of nuclear wastes]. Proc. scientific and practical conference “Nauka. Chernobyl-97”. Kiev, 1998, pp. 26–31.

6. Aha D., Kibler D. Instance-based learning algorithms. Machine Learning, 1991, no. 6, pp. 37–66.

7. Bondarenko J. The multifactor predictive Seis (GIS) model of ecological, genetical and population health risk in connection with dangerous bio-geodynamical process in geopathogenic hazard zones. Chicago, ECO-INFORMA, 2001, pp. 21–34.

8. Frank, E., Wang, Y., Inglis, S., Holmes, G., Witten, I.H. Using model trees for classification. Machine Learning, 1998, no. 32(1), pp. 63–76.

9. Kampichler, C., Dzeroski S., Wieland R. Application of machine learning techniques to the analysis of soil ecological data bases: relationships between habitat features and Collembolan community characteristics. Soil Biology and Biochemistry, 2000, vol. 32, issue 2, pp. 197–209.

10. Mitchell, T. Machine Learning. McGraw-Hill Science/ Engineering/Math., 1997, pp. 5–6