ГЕОЭКОЛОГИЯ
ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ
Geoekologiya, 2020, Vol. 1, P. 72-75
DISPOSAL OF HETEROPHASIC WASTE USING CONTROLLED GAS-CONTACT TECHNOLOGIES
D. V. Zelentsova,# and K. L. Chertesa,##
a Samara State Technical University,
Molodogvardeyskaya ul., 244, Samara, 443100, Russia
#E-mail: dvzelentsov@mail.ru
##E-mail: chertes2007@yandex.ru
A promising technology is considered that allows minimizing the negative impact of the accumulated arrays of heterophase waste by applying the processes of accelerated mineralization of organics that are part of these wastes. The task is set of transforming geoenvironment disturbed by human activities through the creation of new artificial geoenvironment on their basis and the restoration of disturbed natural geoenvironment using engineering methods. The most promising way to accelerate the process of reducing the harmful effects of disturbed geological environment is the use of gas contact technologies, including such a process as aeration. In the framework of the study, the main parameters of geoenvironment that influence the state of the gas flow, which must be taken into account when implementing a particular gas contact technology, are identified and studied. The technology of gas flow control is shown, an example of which are complexes of biothermal treatment of oil-contaminated soils. The main element of such a complex is the combined aeration system, which is necessary to increase the rate of biochemical decomposition of hardly decomposable hydrocarbons in oil waste. The analysis showed that to reduce the dependence on the conduct of physical experiments, it is necessary to use a preliminary estimate of the waste arrays using multivariate data processing methods. The design of biothermal treatment complexes for oil-contaminated soils has shown the promise and feasibility of practical implementation of gas flow control technology in a heterophase medium.
Keywords: geoenvironment, heterophase waste, gas contact technology, aeration
DOI: 10.31857/S0869780920010226
REFERENCES
1. Bykov, D.E., Martynenko, E.G., Savel’ev, A.A., Tupitsyna, O.V., Chertes, K.L. Osvoenie territorii, zanyatykh massivami tverdykh kommunal’nykh otkhodov [Development of territories used as landfills for municipal solid waste]. Ekologiya i promyshlennost’ Rossii, 2016, vol. 20, no 1. pp. 8–13. doi.org/10.18412/1816-0395-2016-1-8- 13. (in Russian)
2. Bykov, D.E., Chertes, K.L., Tupitsyna, O.V., Shcherbina, E.V., Savel’ev, A.A. Obespechenie geoekologicheskoi ustoichivosti massivov kommynal’nykh otkhodov dlya ikh stroitel’no-khozyaistvennogo osvoeniya [Providing geoecological sustainability of municipal solid waste massives for their engineering development]. Ekologiya i promyshlennost’ Rossii, 2016, no 8, pp. 4–11. doi.org/10.18412/1816-0395-2016-8-4-11(in Russian)
3. Zelentsov, D.V., Tupitsyna, O.V., Chertes K.L., Pystin, V.N. Obrabotka osadkov neftesoderzhashchikh stochnykh vod s primeneniem prinuditel’noi vysokonapornoi aeratsii [Processing of oil contained waste water sediments with use of forced high pressured aeration]. Gradostroitel’stvo i arkhitektura, 2012, no 3 (7), pp. 72– 74. (in Russian)
4. Zelentsov, D.V., Chertes, K.L., Bykov, D.E., Tupitsyna, O.V., et al. Kompleks biodestruktsii nefteotkhodov [Oil-waste biodegradation complex]. Ekologiya i promyshlennost’ Rossii, 2011, no 3, pp. 33–34. (in Russian)
5. Chertes, K.L., Bykov, D.E., Tupitsyna, O.V., et al. Intensivnaya biotermicheskaya obrabotka shlamovykh otkhodov neftyanogo kompleksa [Intensive biothermal processing of oil complex’s sludge waste products]. Ekologiya i promyshlennost’ Rossii, 2010, no. 3, pp. 36– 39. (in Russian)
6. Chertes, K., Zelentsov, D., Tupitsyna, O., Pystin, V., Kondratyev, O. Obezvrezhivanie geterofaznykh otkhodov s ispol’zovaniem upravlyaemykh gazokontaktnykh tekhnologii [Detoxification of heterophase wastes using controlled gas-contact technologies]. Ekologiya i promyshlennost’ Rossii, 2019, vol. 23, no 2, pp. 4–9. doi.org/10.18412/1816-0395-2019-2-4-9. (in Russian)
7. Haug, R.T. Sludge composting: a discussion of engineering principles. Compost Science. Journal of Waste Recycling, 2001, vol. 26, no 6, pp. 6–11.
8. Yu, Huiyong, Xie, Beitao, Khan, Rayyan. The changes in carbon, nitrogen components and humic substances during organic-inorganic aerobic co-composting. Bioresource technology, vol. 271, pp. 228–235.