ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Geoekologiya, 2019, Vol. 2, P. 77-86

PREDICTION OF THE CHROME DISTRIBUTION IN SUBARCTIC NOYABRSK USING CO-KRIGING, GENERALIZED REGRESSION NEURAL NETWORK, MULTILAYER PERCEPTRON, AND HYBRID TECHNICS

A. G. Buevich1*, I. E. Subbotina1**, A. V. Shichkin1***, A. P. Sergeev1****, E. M. Baglaeva1*****
1Institute of Industrial Ecology, Ural Branch, Russian Academy of Sciences,
ul. S. Kovalevskoi, 20, Yekaterinburg, 620219 Russia
*E-mail: bagalex3@gmail.com
**E-mail: iesub@mail.ru
***E-mail: and@ecko.uran.ru
****E-mail: alexanderpsergeev@gmail.com
*****E-mail: sem@ecko.uran.ru

Combination of geostatistical interpolation (kriging) and machine learning (artificial neural networks, ANN) methods leads to an increase in the accuracy of forecasting. The paper considers the application of residual kriging of an artificial neural network to predicting the spatial contamination of the surface soil layer with chromium (Cr). We reviewed and compared two neural networks: the generalized regression neural network (GRNN) and multilayer perceptron (MLP), as well as the combined method: multilayer perceptron residual kriging (MLPRK). The study is based on the results of the screening of the surface soil layer in the subarctic Noyabrsk, Russia. The models are developed based on computer modeling with minimization of the RMSE. The MLPRK model showed the best prognostic accuracy.
Keywords: artificial neural networks, chromium, residual kriging, co-kriging.

DOI: https://doi.org/10.31857/S0869-78092019277-86

REFERENCES

1. Buevich, A.G., Sergeev, A.P., Tarasov, D.A., Ra- khmatova, A.Y., Kramarenko, A.A. Iskusstvennye neironnye seti i geostatistika v prognozirovanii raspredeleniya khimicheskikh elementov na fonovoi plosh- chadke [Artificial neural networks and geostatistics in forecasting the distribution of chemical elements in the background area], Geoekologiya, 2017, 2, pp. 74¬82 (in Russian).

2. Voitkevich, G.V., Miroshnikov, A.E., Povarennykh, A.S., Prokhorov, V.G. Kratkii spravochnik po geokhimii [Short guidebook in geochemistry], Nedra Publ., 1977 (in Russian).

3. Saet, Yu.E., Revich, B.A., Yanin, E.P. et al. Geokhimiya okruzhayushchei sredy [Environment geochemistry] Moscow, Nedra Publ., 1990, pp. 84-108 (in Russian).

4. Anagu, I., Ingwersen, J., Utermann, J., Streck T. Estimation of heavy metal sorption in German soils using artificial neural networks. Geoderma, 2009, 152, pp.104-112.

5. Bishop, C. Neural networks for pattern recognition. Clarendon, Oxford, 1995, 504 p.

6. Cambardella, C., Moorman, T., Novak, J., Parkin, T., Karlen, D., Turco, R., Konopka, A. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J., 1994, no. 58, pp. 1501-1510.

7. Dai, F., Zhou, O., Lva, Z., Wang, X., Liu, G. Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecological Indicators, 2014, no. 45, pp. 184-194.

8. Demyanov, V., Kanevsky, M., Chernov, S., Savelieva, E., Timonin, V. Neural Network Residual Kriging Application for Climatic Data. Journal of Geographic Information and Decision Analysis, 1998, no. 2, pp. 215-232.

9. Falamaki, A. Artificial neural network application for predicting soil distribution coefficient of nickel. Journal of Environmental Radioactivity, 2013, no. 115, pp. 6-12.

10. Forsythe, K.W., Marvin, C.H., Valancius, C. J., Watt, J.P., Aversa J.M., Swales, S.J., Jakubek, D.J., Shaker, R.R. Geovisualization of Mercury Contamination in Lake St. Clair Sediments. Journal of Marine Science and Engineering, 2016, no. 4(1), p. 19.

11. Frank, R., Ishida, K., Suda, P. Metals in agricultural soils of Ontario. Canadian Journal of Soil Science, 1976, no. 56, pp. 181-196.

12. Goovaerts, P. Geostatistics in soil science: State of the art and perspectives. Geoderma, 1999, no. 89, pp.1-45.

13. Guo, G.H., Wu, F., Xie, F., Zhang, R. Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. Journal of Environmental Sciences, 2012, vol. 24, issue 3, pp. 410-418.

14. Kanevski, M., Pozdnoukhov, A., Timonin, V. Ma¬chine Learning for Spatial Environmental Data The¬ory. Applications and Software, 2009, EPFL Press.

15. Koike K., Matsuda S., Suzuki T., Ohmi M. Neural network-based estimation of principal metal contents in the Hokuroku district, northern Japan, for exploring Kuroko-type deposits . Natural Resources Research, 2002, no. 11(2), pp. 135-156.

16. Lakes, T., Muller, D., Kruger, C. Cropland change in southern Romania: A comparison of logistic regressions and artificial neural networks. Landscape Ecology, 2009, no. 24(9), pp. 1195-1206.

17. Li, Y., Li, C., Tao, J.J., Wang, L.D. Study on Spatial Distribution of Soil Heavy Metals in Huizhou City Based on BP-ANN Modeling and GIS. Procedia Environmental Sciences, 2011, no. 10, pp. 1953-1960.

18. Liu, F., He, X., Zhou, L. Application of generalized regression neural network residual kriging for terrain surface interpolation. Proc. SPIE 7492, International Symposium on Spatial Analysis, Spatial-Temporal Data Modeling, and Data Mining, 2009, 74925F.

19. Matheron, G. Principles of geostatistics. Economic Geology, 1963, no. 58, pp. 1246-1266.

20. Meer, F. D. Introduction to geostatistics. ITC Lecture Notes, 1993, 72 p.

21. Mohanty, K., Majumdar, T.J. Using artificial neural networks for synthetic surface fitting and the classification of remotely sensed data. International Journal of Applied Earth Observation and Geoinformation, 1999, no. 1(1), pp. 78-84.

22. Samanta, B., Ganguli, R., Bandopadhyay, S. Com-paring the Predictive Performance of Neural Networks with Ordinary Kriging in a Bauxite Deposit .Transactions of the Institution of Mining and Metallurgy, 2005, no. 114, pp. 129-139.

23. Schloeder, C.A., Zimmerman, N.E., Jacobs, M.J. Comparison of methods for interpolating soil properties using limited data. Soil Sci. Soc. Am. J., 2001, no. 65, pp. 470-479.

24. Sergeev, A.P., Baglaeva, E.M., Shichkin, A.V. Case of soil surface chromium anomaly of a northern urban territory — preliminary results. Atmospheric Pollution Research, 2010, vol. 1, pp. 44-49.

25. Shacklette, H.T., Boerngen, J. G. Element concentrations in soils and other surficial materials of the conterminous United States, U.S. Geological Survey professional paper, 1984, no. 1270, 105 p.

26. Shaker, R., Tofan, L., Bucur, M., Costache, S., Sava, D., Ehlinger, T. Land cover and landscape as predic¬tors of groundwater contamination: a neural-network modelling approach applied to Dobrogea, Romania. Journal of Environmental Protection and Ecology, 2010, no. 11(1), pp. 337-348.

27. Shaker, R.R., Ehlinger, T.J. Exploring non-linear relationships between landscape and aquatic ecological condition in southern Wisconsin: A GWR and ANN approach. International Journal of Applied Geospatial Research, 2014, no. 5(4), pp. 1-20.

28. Shepherd, A.J. Second-Order Methods for Neural Networks: Fast and Reliable Training Methods for Multi-Layer Perceptrons. Springer-Verlag Publ., 1997, 145 p.

29. Tarasov, D.A., Buevich, A.G., Sergeev, A.P., Shich- kin, A.V. High Variation Topsoil Pollution Forecasting in the Russian Subarctic: Using Artificial Neural Networks Combined with Residual Kriging. Applied Geochemistry, 2018, vol. 88, part B, pp.188-197.

30. Worsham, L., Markewitz, D., Nibbelink, N. Incorporating spatial dependence into estimates of soil carbon contents under different land covers. Soil Sci. Am., 2010, no. 74, pp. 635-646.

31. Yfantis, E.A., Flatman, G.T., Behar, J.V. Efficiency of kriging estimation for square, triangular, and hexagonal grids. Math. Geol., 1987, no. 19, pp. 183-205.

32. Zhang, C., Fay, D., McGrath, D., Grennan, E., Carton, O.T. Use of trans-Gaussian kriging for national soil geochemical mapping in Ireland. Geochemistry: Exploration Environment Analysis, 2008, vol. 8, pp. 255-265.