ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Geoekologiya, 2018, Vol. 3, P. 72-76

FORMATION OF PRIMARY RADIOCOLLOIDS IN LEACHING OF SODIUM-ALUMOPHOSPHATE GLASS MATRIX OF RADIOACTIVE WASTE

A.M. Pervukhina

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, Staromonetnyi per. 35, Moscow, 119017 Russia. E-mail: Pervukhinaa@hotmail.com

We considered an effect of provisional storage of sodium-alumophosphate glass matrix of high-level radioactive waste (HLW) on its resistance to the groundwater influence after the final disposal in a geological repository. A transformation of the Na-Al-P-glass with HLW simulators in a dry steam at elevated temperatures is examined. Stable isotopes of Cs, Sr, and U as well as Ce and Nd, as geochemical analogues of actinides (Pu, Am, Cm), were doped to the glass as radionuclide simulators. Ageing of the Na-Al-P-glass in an autoclave for 24 hours at the temperature of 300oC and humidity of 66% leads to its devitrification. This causes a substantial deterioration of leaching resistance of the matrix. Predominant part of Sr, U and REE-simulators of actinides in the leaching solution is in colloidal form.

Key words: radioactive wastes, underground repository, waste form, glass, crystallization, leaching, colloidal form of transport.

REFERENCES

1. Vashman, A.A., Demin, A.V., Krylova, N.V. et al. Fosfatnye stekla s radioaktivnymi otkhodami [Phosphate glasses with radioactive wastes]. Vashman, A.A., Polyakov A.S., Eds., Moscow, TsNIIatominform Publ., 1997, 172 p. (in Russian)

2. Remizov, M.B., Kozlov, P.V., Logunov, M.V. et al. Kontsep- tualnye i tekhnicheskie resheniya po sozdaniyu na PO May- akustanovok osteklovyvaniya tekushchikh i nakoplennykh zhidkikh VAO [Conceptual and Technical Solutions Relat- ed to Creation of Facilities for Current and Accumulated HLW vitrification at the Mayak PA]. Voprosy radiatsionnoy bezopasnosti, 2014, no 3, pp.17–25. (in Russian)

3. Yudintsev, S.V., Pervukhina, A.M., Mokhov, A.V. et al. Vli- yaniye raskristallizatsii fosfatnogo stekla na ustoychivost’ matritsi otkhodov k vyshchelachivaniyu [Influence of phosphate glass crystallization on leaching resistance of waste form]. Doklady Akademii Nauk, 2017, vol. 473, no 4, pp. 459–465. (in Russian)

4. Bates, J.K., Jardine, L.J., Steindler, M.J. Hydration aging of nuclear waste glass. Science, 1982, vol. 218, pp.51–54. 


5. Bates, J.K., Seitz, M.G., Steindler, M.J. The relevance of vapor phase hydration aging to nuclear waste isolation. Nuclear and Chemical Waste Management, 1984, vol. 5, pp. 63–73. 


6.Boen, R. Glass packages and manufacturing processes. Nu- clear Waste Conditioning. Bonin B. et al., Eds., Paris, Éditions du Moniteur, 2009, pp. 27–32. 


7. IAEA disposal of radioactive waste. Specific safety requirements No. SSR-5. Vienna, International Atomic Energy Agency, 2011, 83 p.

8. Inagaki, Y., Sakata, H., Idemitsu, K. et al. Effects of wa- ter redox conditions and presence of magnetite on leaching of Pu and Np from HLW glass. Scientific basis for nuclear waste management XXI, vol. 506. McKinley I.G., McCombie C., Eds., Warrendale, Materials Research Society, 1998, pp. 177–184.

9. Kersting, A.B., Efurd, D.W., Finnegan, D.L. et al. Migration of plutonium in ground water at the Nevada Test Site. Nature, 1999, vol. 397, pp. 56–59.


10. Krauskopf, K.B. Geology of high-level nuclear waste disposal. Ann. Rev. Earth Planet. Sci. vol. 16, 1988, pp. 173–200.

11. Laverov, N.P., Yudintsev, S.V., Kochkin, B.T., Malkovsky, V.I. The Russian strategy of using crystalline rock as a repository for nuclear waste. Elements, 2016, vol. 12, pp. 253– 256.

12. Malkovsky, V. Theoretical analysis of colloid-facilitated transport of radionuclides by groundwater. Actinide nanoparticle research. Kalmykov S.N. and Denecke M.A., Eds. Berlin, Heidelberg, Springer-Verlag, 2011, pp. 195– 243.

13. Marsily G., de. Quantitative hydrogeology. Orlando, Florida: Academic Press, 1986. 440 p.

14. McCarthy, J., Czerwinski, K.R., Sanford, W.E. et al. Mobilization of transuranic radionuclides from disposal trenches by natural organic matter. Journal of Contaminant Hydrology, 1998, vol. 30, no 1, pp. 49–77.

15. Penrose, W.R., Polzer, W.L., Essington, E.H. et al. Mobility of plutonium and americium through a shallow aquifer in a semiarid region. Environmental Science & Technology, 1990, vol. 24, no 2, pp. 228–234.

16. Richard, A., Montel, J.-M., Leborgne, R. et al. Monazite alteration in H2O±HCl±NaCl±CaCl2 fluids at 150oC and Psat: Implications for Uranium Deposits. Minerals, 2015, vol. 5, pp. 693–706.