ГЕОЭКОЛОГИЯ
ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ
Geoekologiya, 2018, Vol. 3, P. 56-64
M. Yu. Semenov, I.I. Marinaite, L.P. Golobokova, O.I. Khuriganova
Limnological Institute of Siberian Branch of Russian Academy of Sciences (LIN SB RAS), Ulan-Batorskaya ul., 3, 664033 Irkutsk, Russia E-mail: smu@mail.ru
The composition of polycyclic aromatic hydrocarbons in near-water air layer and surface water layer of Lake Baikal was investigated. The obtained compositions were compared to the PAH compositions of possible emission sources. It was shown that the PAH composition of each source is unique, thus the sources cannot be grouped by fuel type or by pyrogenic/petrogenic origin. According to the multivariate statistical analysis, the number of sources was equal to three both for near water air and surface water. To identify these sources, the mixing diagrams were drawn. The mixing diagrams pointed to oil and petroleum products as the common source for both environmental compartments. Besides the oil and petroleum products, the wood combustion and paper mills were also the sources of PAHs in the air. The other two sources of PAHs in water were oil and coal boilers. The contribution of identified sources to air and water pollution were calculated and mapped. The composition of PAHs in water is found to be controlled by remote nonpoint sources, whereas the composition of PAHs in air is due to local point sources.
Key words: Baikal, polycyclic aromatic hydrocarbons, emission sources, water, aerosol, source contributions.
REFERENCES
1. Balin, Yu.S., Klemasheva, M.G., Kokhanenko, G.P., Nasonov, S.V., Novoselov, M.M., Penner I.E. Lidarnye issledovaniya vertikal’noi struktury aerozol’nykh polei at- mosfery nad ozerom Baikal v period lesnykh pozharov [Li- dar studies of vertical structure of aerosol fields over Lake Baikal during the period of forest fires]. Optika atmosfery i okeana, 2016, vol. 29, no. 8, pp. 689–693. (in Russian)
2. Batoev, V.B., Vaifslog, L., Ventsel, K.-D., Tsidenova, O.V., Palitsina, S.S. Zagryaznenie basseina ozera Baikal: poliaromaticheskie uglevodorodi [Pollution of the Lake Baikal: polyaromatic hydrocarbons]. Khimiya v intere- sakh ustoichivogo rasvitiya, 2003, no. 11, pp. 837–842. (in Russian)
3. Belikh, L.I., Malikh, Yu.M., Penzina, E.E., Smaguno- va A.N. Istochniki zagryazneniya atmosfery politsikliches- kimi aromaticheskimi uglevodorodami v promyshlennom Pribaikal’e [Sources of polycyclic aromatic hydrocar- bon air pollution in industrial CisBaikal region]. Opti- ca atmosferi i okeana, 2002, V. 15, no. 10, pp. 944–948. (in Russian)
4. Kim, I.N., Kim, G.N., Krivosheeva, L.V., Khitro- vo, I.A. Issledovaniya sostava politsiklicheskikh aro- maticheskikh uglevodorodov v koptil’nom dyme [Investigating the composition of polycyclic aromatic hydrocarbons in smoke from smoking chambers]. Izvestiya VUZov. Pishchevaya tekhnologiya, 1999, vol. 5–6, pp. 98–102. (in Russian)
5. Kontorovich, A.E., Kashirtsev, V.F., Moskvin, V.I., Burshtein, L.M., Zemskaya, T.I., Kostyreva, E.A., Kalmychkov, G.V., Khlystov, O.M. Neftegazonosnost’ otlozhheniy ozera Baikal [Oil-and-gas-bearing capaci- ty of Lake Baikal], 2007, vol. 48, no. 12, pp. 1346–1356. (in Russian)
6. Marinaite, I.I. Politsiklicheskie aromaticheskikie ug- levodorody v vode pritokov Yuzhnogo Baikala [Polycyclic aromatic hydrocarbons in water of tributaries of the Southern Baikal]. Optika atmosfery i okeana, 2006, vol. 19, no. 6, pp. 499–503. (in Russian)
7. Nemirovskaya, I.A. Uglevodorody donnykh osadkov estuariya Severnoi Dviny [Hydrocarbons of bottom sediments of Severnaya Dvina estuary]. Vodnye resursy, 2007, vol. 34, no. 6, pp. 737–744. (in Russian)
8. Nikanorov, A.M., Reznikov, S.A., Matveev, A.A., Ara- kelyan, V.S. Monitoring politsiklicheskikh aromaticheskikh uglevodorodov v basseine oz. Baikal v rayonakh sil’nogo antropogennogo vozdeistviya [Monitoring of polycyclic aromatic hydrocarbons in areas of intensive impact in Lake Baikal basin]. Meteorologiya i gidrologiya, 2012, no. 7, pp. 66–76. (in Russian)
9. Pshenin, V.N. Transport kak istochnik politsiklicheskikh aromaticheskikh uglevodorodov v okruzhayushchei srede [Transport as the source of polycyclic aromatic hydro- carbons in the environment]. Transport: nauka, tekhnika, upravleniye, М.: VINITI, 1995, no. 8, pp. 27–44. (in Russian)
10. Reznikov, S.A., Adzhiev, R.A. Stoikie organicheskie za- gryaznyayushchiye veshchestva v donnykh otlozheniyakh na severe oz. Baikal v raione vliyaniya trassy Baikalo-Amurskoi magistrali [Persistent organic pollutants in bottom sediments in the north of Lake Baikal in the area of impact of Baikal-Amur railway]. Meteorologiya i gidrologiya, 2015, no. 3, pp. 87–96. (in Russian)
11. Saneev, B.G., Ivanova, I. Yu., Maisyuk, E.P, Tuguzo- va, T.F., Ivanov, R.A. Energeticheskaya infrastruktura tsentralnoi zony Baikalskoi prirodnoy territorii: vozdeistvie na prirodnuyu sredu i puti ego snizheniya [Energy infra- structure of the central zone of Baikal natural territory: the influence on environment and ways to its decrease]. Geografiya i prirodnye resursy, 2016, no. 5, pp. 218–224. (in Russian)
12. Semenov, M. Yu., Marinaite, I.I. Otsenka vkladov mnozhestvennykh istochnikov v zagryazneniye territo- rii politsiklicheskimi aromaticheskimi uglevodorodamy (g. Shelekhov, Irkutskaya oblast) [Assessment of contribu- tions of multiple sources of polycyclic aromatic hydro- carbons to territory pollution (city of Shelekhov, Irkutsk region)]. Geoekologiya. Inzhenernaya geologiya. Gidroge- ologiya. Geokriologiya, 2014, no. 6, pp. 560–568. (in Russian)
13. Suzdorf, A.R., Morozov, S.V., Kuzubova, L.I., Anshits, N.N., Anshits, A.G. Politsiklicheskiye aromaticheskiye uglevodorody v okruzhayushchei srede: istochniki, profili i marshruty prevrashcheniya [Polycyclic aromatic hydro- carbons in the environment: sources, profiles, and transformation paths]. Khimiya v interesakh ustoichivogo rasvitiya, 1994, vol. 2, no. 2–3, pp. 511–540. (in Russian)
14. Khatmullina, R.M., Safarova, V.I., Safarov, A.M. Emis- siya politsiklicheskikh aromaticheskikh uglevodorodov v okruzhayushchuyu sredu [Emission of polycyclic aro- matic hydrocarbons into the environment]. Bezopastnost zhiznedeyatelnosti, 2014, no. 11, pp. 34–37. (in Russian)
15. Aas, E., Baussant, T., Balk, L., Liewenborg, B., Andersen, O.K. PAH metabolites in bile, cytchrome P4501A and DNA adducts as environmental risk parameters for chronic oil exposure: a laboratory experiment with Atlantic cod. Aquatic toxicology, 2000, no. 51, pp. 241–258.
16. Galarneau, E. Source specificity and atmospheric processing of airborne PAHs: implications for source apportionment. Atmospheric Environment, 2008, vol. 42, pp. 8139–8149.
17. Kerr, J.M., Melton, H.R., McMillen, S.J., Magaw, R.I., Naughton, G., Little, G.N. Polyaromatic hydrocarbon content in crude oils around the world. Exploration and production, Austin, Texas, USA, 1999, pp. 359–368.
18. Larsen, R.K., Baker, J.E. Source apportionment of poly- cyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environmental Science and Technology. 2003, vol. 37, pp. 1873–1881.
19. Tobiszewski, M., Namiesnik, J. PAH diagnostic ratios for the identification of pollution emission sources. Environmental pollution, 2012, vol. 162, pp. 110–119.
20. Wang, Z.D., Fingas, M., Shu, Y.Y., Sigouin, L., Landriault, M., Lambert, P. Quantitative characterization of PAHs in burn residue and soot samples and differentiation of pyrogenic PAHs from petrogenic PAHs – the 1994 Mobile Burn Study. Environmental Science and Technology. 1999, vol. 33, pp. 3100–3109.