ГЕОЭКОЛОГИЯ
ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ
Geoekologiya, 2020, Vol. 3, P. 74-81
ECOLOGICAL RISK OF VOLATILE ORGANIC SUBSTANCES FORMATION AFTER GREAT LANDSLIDE
L. M. Kondratievaa, Z. N. Litvinenkoa,b,#, and G. M. Filippovaa
a Institute of Water and Ecology Problems, Far Eastern Branch, Russian Academy of Sciences, ul. Dikopoltseva, 56, Khabarovsk,
680000 Russia
b Far Eastern State Transport University, ul. Serysheva, 47, Khabarovsk, 680021 Russia
#E-mail: zoyalitvinenko@gmail.com
The results are presented on water quality study in the Bureya Reservoir after a major landslide in December 2018. The comparative analysis of the changes in the qualitative composition of volatile organic substances in the water around the landslide body before and after blasting works and in the artificial cannel was carried out using the gas chromatography method. In the water samples, among the dominant components, methanol and methylated benzene derivatives were found; their concentration increased after water drainage through the landslide body. By the example of water extracts fromrocks and soil, it is shown that many compounds are of natural origin. Some compounds (hexane, acetone, methanol, acetates, and xylenes) can act as intermediates during the transformation of plant residues, as well as the interrelated processes of methanogenesis and methanonotrophy. Interaction of water with rocks, the migration of organic substances from the pore space and their involvement in biogeochemical processes are the main factors of the water quality formation in the Bureya reservoir after a great landslide.
Keywords: ecological risk, reservoir, landslide, volatile organic substances
DOI: 10.31857/S0869780920030030
REFERENCES
1. Gidroekologicheskii monitoring zony vliyaniya Bureiskogo gidrouzla [Hydroecological monitoring of Burea waterworks influence zone]. Khabarovsk, IVEP DVO RAN, 2007, 273 p. (in Russian)
2. Dzyuban, A.N., Tsykl metana v gruntakh vodokhra- nilisch Volzhsko-Kamskogo kaskada i ego rol' v destrukt- sii organicheskogo veschestva [Methane cycle in the soils of reservoirs of the Volga-Kama cascade and its role in the destruction of organic matter]. Trudy IBVV RAN, 2016, vol. 74 (77), pp. 21-36. (in Russian)
3. Kallistova, A.Yu., Merkel', A.Yu., Tarnovetskii, I.Yu, Pimenov, N.V. Obrazovanie i okislenie metana prokario- tami [The formation and oxidation of methane by prokaryotes]. Mikrobiologiya, 2017, vol. 86, no.6, pp. 661683. (in Russian)
4. Kondrat'eva, L.M Bureiskii opolzen' i ekologicheskie ris- ki [Bureya landslide and environmental risks]. Vestnik DVO RAN, 2019, no. 2, pp. 45-55. (in Russian)
5. Kulakov, V.V., Makhinov, A.N., Kim, V.I., Ostrou- khov, A.V., Katastroficheskii opolzen' i tsunami v vodohranilische Bureiskoi GES (bassein Amura) [Catastrophic landslide and tsunami in the reservoir of the Bureyskaya hydroelectric station (Amur basin)]. Geoekologiya, 2019, no.3, pp. 13-21. (in Russian)
6. Makhinov, A.N., Kim, V.I., Ostroukhov, A.V., Krupnyi opolzen' v doline reki Bureya i tsunami v vodokhranilish- che Bureiskoi GES [A major landslide in the Bureya river valley and the tsunami in the reservoir of the Bureys- kaya hydroelectric station]. Vestnik DVO RAN, 2019, no. 2, pp. 35-44. (In Russian)
7. Andres, N., Badoux, A. The Swiss flood and landslide damage database: normalization and trends. Journal of Flood Risk Management. 2018. e 12510. https://doi.org/10.1111/jfr3.12510
8. Borden, R.C., Won, J., Yuncu, B. Natural and Enhanced Attenuation of Explosives on a Hand Grenade Range. Journal of Environmental Quality, 2017, vol. 46, pp. 961-967. https://doi.org/10.2134/jeq2016.12.0466
9. Badoux, A., Andres, N., Techel, F., Hegg, C. Natural hazard fatalities in Switzerland from 1946 to 2015. Natural Hazards and Earth System Science, 2016, vol. 16, no. 12, pp. 2747-2768. https://doi.org/10.5194/nhess-16-2747-2016
10. Buan, N.R. Methanogens: pushing the boundaries of biology. Emerging Topics in Life Sciences, 2018, no. 2, pp. 629-646. https://doi.org/10.1042/ETLS20180031
11. Chatterjee S., Deb U., Datta S., Walther C., Gupta D. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation. Chemosphere, 2017, vol. 184, pp. 438-451. https://doi.org/10.1016/j.chemosphere.2017.06.008
12. Conrad, R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep., 2009, no. 1, pp. 285-292. https://doi.org/10.1111/j.1758-2229.2009.00038.x
13. Cozzarelli, I.M., Bekins, B.A., Eganhouse, R.P., Warren, E., Essaid, H.I. In situ measurements of volatile aromatic hydrocarbon biodegradation rates in groundwater. J. Contam Hydrol, 2010, vol. 11, no. 1-4, pp. 48-64. https://doi.org/10.1016/j.jconhyd.2009.12.001
14. Godwin, C.M., McNamara, P.J., Markfort, C.D. Evening methane emission pulses from a boreal wetland correspond to convective mixing in hollows. Journal of Geophysical Research: Biogeosciences. 2013, vol. 118, no.3, pp. 994-1005.
https://doi.org/10. I 002/jgrg.200S2
15. Gopinath, M., Dhanasekar, R. Microbial degradation of toluene. African Journal of Biotechnology, 2012, vol.11 (96), pp. 16210-16219. https://doi.org/10.5897/AJB12.2251
16. Juhasz, A.L., Naidu, R. Explosives: fate, dynamics, and ecological impact in terrestrial and marine environments, Rev. Environ. Contam. Toxicol., 2007, vol. 191, pp.163-215. https://doi.org/10.1007/978-0-387-69163-3_6
17. Kalyuzhnaya, M.G., Collins, D., Chistoserdova, L. Microbial Cycling of Methane. Encyclopedia of Microbiology (Fourth Edition). Reference Module in Life Sciences, Academic Press, 2019. pp. 115-124. https://doi.org/10.1016/b978-0-12-809633-8.90670-8
18. Liu, Y., Whitman, W.B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. N. Y. Acad. Sci., 2008, vol. 1125, pp. 171-189. https://doi.org/10.1196/annals.1419.019
19. Lu, Y., Li, X., Chan, A. Damage constitutive model of single flaw sandstone under freeze-thaw and load. Cold Regions Science and Technology, 2019, vol. 159, pp. 20-28. https://doi.org/10.1155/2019/9867681
20. Mesic, M., Dromart, G., Oger, P. Microbial methanogenesis in subsurface oil and coal. Res. Microbiol., 2013, vol. 164, № 9, pp. 959-972. https://doi.org/10.1016/j.resmic.2013.07.004
21. Mayumi, D., Mochimaru, H., Tamaki, H., Yamamoto, K., Yoshioka, H., Suzuki, Y., Kamagata, Y., Sakata, S. Methane production from coal by a single methanogen. Science, 2016, vol. 354, pp. 222—225. https://doi.org/10.1126/science.aaf8821
22. Pei, W., Zhang, M., Li, S., Lai ,Y., Jin, L. Enhancement of convective cooling of the porous crushed-rock layer in cold regions based on experimental investigations. International Communications in Heat and Mass Transfer, 2017, vol. 87, pp. 14-21. https://doi.org/ 10.1016/j.icheatmasstransfer.2017.06.019
23. Qu, D., Dengke L., Li, X., Luo, Y., Kun, X. Damage evolution mechanism and constitutive model of freezethaw yellow sandstone in acidic environment. Cold Regions Science and Technology, 2018, vol. 155, pp. 174-183. https://doi.org/10.1155/2019/9867681
24. Sims, J. G., Steevens, J. A. The role of metabolism in the toxicity of 2,4,6-trinitrotoluene and its degradation products to the aquatic amphipod Hyalella Azteca. Ec- otoxicol. Environ. Saf., 2008, vol. 70, pp. 38-46. https://doi.org/10.1016/j.ecoenv.2007.08.019
25. Strehse, J.S., Appel, D., Geist, C., Martin, H.J., Maser, E. Biomonitoring of 2,4,6-trinitrotoluene and degradation products in the marine environment with transplanted blue mussels (M. edulis). Toxicology, 2017, vol. 390, pp. 117-123. https://doi.org/10.1016/j.tox.2017.09.004
26. Won, J., Borden, R.C. Impact of glycerin and lignosulfonate on biodegradation of high explosives in soi. J. Contam. Hydrol., 2016, vol. 194, pp. 1-9. https://doi.org/10.1016/j.jconhyd.2016.08.008
27. Yu, Z., Beck, D.A., Chistoserdova, L. Natural selection in synthetic communities highlights the roles of methy- lococcaceae and methylophilaceae and suggests differential roles for alternative methanol dehydrogenases in methane consumption. Front. Microbiol., 2017, V. 5, no. 8, e2392. https://doi.org/10.3389/fmicb.2017.02392
28. Yu, Q., Fan, K., You, Y., Guo, L., Yuan, C. Comparative analysis of temperature variation characteristics of permafrost roadbeds with different widths. Cold Regions Science and Technology, 2015, vol. 117, pp. 12-18. 10.1016/j.coldregions.2015.05.002
29. Zhang, M., McSavaney, M.J. Is air pollution causing landslides in China? Earth and Planetary Science Letters, 2018, vol. 481, pp. 284-289. https://doi.org/10.1016/j.epsl.2017.10.045