ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Geoekologiya, 2018, Vol. 5, P. 73-80

ANALISIS OF SATURATED CLAY COMPRESSION ON THE BASIS OF THE MOHR-COULOMB CRITERION

G. P. Postoeva,#

aSergeev Institute of Environmental Geoscience, Russian Academy of Sciences, Ulansky per. 13, str.2, Moscow, 101000 Russia
#E-mail: opolzen@geoenv.ru

The Mohr-Coulomb criterion, in terms of principal stresses, allows determining clay structural strength and horizontal stresses that control equilibrium in the point. With vertical pressure on the saturated soil not ex-ceeding the structural strength, the pressure is completely taken by pore water and through the pore water pass to mineral structure. At this stage the soil strength in the point remains the same and there are no horizontal stresses, excess pore pressure or filtration. With vertical pressure (and pore pressure as well) exceeding the values of clay structural strength, the excess pore pressure at a point emerges. Absence or lack of filtration leads to lateral pressure summing up excess pore pressure and effective values of horizontal stress at the point.

Regularities of changes in mobilized clay strength at a point on the basis of the Mohr-Coulomb criterion, in terms of principal stresses, are considered during virgin compression, with free filtration, under the influence of groundwater pressure.

Keywords: the Mohr-Coulomb criterion, principal stresses, lateral pressure, soil structure strength, excess pore pressure, groundwater pressure, filtration

REFERENCES

1. Gor’kova, I.M. Fiziko-khimicheskie issledovaniya dis-persnykh osadochnykh porod v stroitel’nykh tselyakh. [Physicochemical studies of dispersed sedimentary rocks for the construction purposes]. Мoscow, Stroyiz-dat Publ., 1975, 151 p. (in Russian)

2. Krupnomasshtabnoe modelirovanie podgotovki i predvest-nikov zemletryasenii. [Large-scale modeling of earth-quake preparation and precursors]. Sobolev, G.A., Koltsov, A.V. Eds., Moscow, Nauka, 1988, 208 p. (in Russian)

3. Lyashenko, P .A. O deformatsii glinistogo grunta v osno-vanii fundamenta [About the clay soil deformation in the foundation basis]. Trudy yubileinoi konferentsii, posvyashchennoi 50-ti letiyu ROMGGiF [Proc. Jubilee conference devoted to 50th anniversary of the Russian society for soil mechanics, geotechnics and foundation engineering], 2007, vol. 2. pp. 114–118. (in Russian)

4. Maslov, N .N. Osnovy inzhenernoi geologii i mekhaniki gruntov [Fundamentals of engineering geology and soil mechanics]. Moscow, Stroiizdat, 1982, 511 p. (in Rus-sian)

5. Medkov, E .I. Fazy soprotivleniya grunta [Soil resistance phases]. Mekhanika gruntov, osnovaniya i fundamenty [Soil mechanics, soil bases and foundations]. Moscow, Transzheldorizdat, 1959, issue 100, pp. 26–61. (in Russian)

6. Molokov, A.A. Inzhenerno-geologicheskie protsessy [Engineering geological processes]. Мoscow, Nedra, 1985, 206 p. (in Russian)

7. Osipov, V.I. Fiziko-khimicheskaya teoriya effektivnykh napryazhenii v gruntakh. [Physicochemical theory of ef-fective soil stresses]. Gruntovedenie, 2013, no. 2, pp. 3– 34. (in Russian)

8. Postoev, G .P. P redel’noe sostoyanie i deformatsii gruntov v massive (opolzni, karstovye provaly, osadki gruntovykh osnovanii. [Limit state and soil deformations in a massif (landslides, karst failures, ground settlings)]. Мoscow, St. Petersburg, Nestor-Istoriya Publ., 2013, 100 p. (in Russian)

9. Sposob opredeleniya mekhanicheskikh svoistv gruntov: patent na izobretenie 2600494 RF [Method for deter-mining the mechanical soil properties: Invention patent 2600494 Russian Federation]. Postoev, G.P., Kazeev, A.I., Kutergin, V.N.; publ. 20.10.2016, bull. no. 29. (in Russian)