ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Geoekologiya, 2021, Vol. 5, P. 3-21

CALIBRATION OF SEISMIC INTENSITY ATTENUATION MODEL FOR THE BALKAN REGION (THE 2020 EARTHQUAKES IN CROATIA)    

N. I. Frolovaa,#, I. P. Gabsatarovab,##, S. P. Suchshevc###
A. N. Ugarovc, N. S. Malaevaa

aSergeev Institute of Environmental Geoscience, Russian Academy of Sciences, Ulanskii per., 13, bld. 2, Moscow, 101000 Russia

bGeophysical Survey, Russian Academy of Sciences,
Lenina av., 189, Obninsk, Kaluga region, 249035 Russia 

cMoscow State Technical University named after Bauman,
2-ya Baumanskaya str., 5, Moscow, 105005 Russia

#E-mail: frolovanina7@gmail.com
##E-mail: ira@gsras.ru
###E-mail: Sersan150@mail.ru

The paper describes the results of studies aimed at calibration of the parameters of the macroseismic field model in one of the zones in the Balkans based on the data of the 2020 earthquakes in Croatia. The zone is located within the continental region of Croatia, on the border of the Dinarids and the southern part of the Pannonian Basin, which are a part of the Alpine-Himalayan seismic belt. The calibrated parameters of the macroseismic field model obtained for another region of this belt, located in the Caucasus, which manifest the similar features of tectonic development, were used for comparison. In order to increase the reliability of near real time earthquake loss estimations the paper analyzes the alert messages from several seismological centers, focal mechanisms for taking into account the direction of radiation and the choice of a seismogenic fault in the Earth's crust. Simulated intensities obtained with “Extremum” System application were compared with reported ones. The obtained calibration results supplemented the database used for earthquake consequences simulation in emergency mode, and will be used for near real time loss estimations with the “Extremum” system application in the case of destructive earthquakes in the Balkan Peninsula region.

Keywords: near real time earthquake loss estimates, damaging earthquake, macroseismic field model calibration, the Alpine-Himalayan seismic active belt, region analogs, Information System “Extremum”

REFERENCES

  1. Kondorskaya, N.V., Gorbunova, I.V., Kireev, I.A, Vandysheva, N.V. Unifitsirovannyi katalog zemletryasenii Severnoi Evrazii s drevneishikh vremen do 1995 g. [Special earthquake catalogue of Northern Eurasia from ancient times through 1995]. N.V. Kondorskaya, V.I. Ulomov, Eds. URL: http://www.scgis.ru System of data bases. JIPE RAS, 1996. (in Russian)
  2. Lutikov, A.I., Gabsatarova, I.P. Sootnoshenie mezhdu momentnoi magnitudoi MW i magnitudoi po poverkhnostnym volnam MS dlya Kavkazskogo regiona i sopredel’nykh territorii [Relationship between moment magnitude MW and surface wave magnitude MS for the Caucasus region and adjacent territories]. Geofizicheskie issledovaniya, 2016, vol. 17, no.1, pp. 29-36. (in Russian)
  3. Petrova, N.V., Mikhailova, R.S. Problemy edinoi magnitudnoi klassifikatsii zemletryasenii Kavkaz-Kopetdagskoi seismoaktivnoi zony [Problems of a unified magnitude classification of earthquakes in the Caucasus-Kopetdag seismic zone]. In: Sovremennye metody obrabotki i interpretatsii seismologicheskikh dannykh [Modern methods of processing and interpretation of seismological data]. Proc. Tenth Int. Seismological School. A.A. Malovichko, Ed.-in-Chief. Obninsk: FITs EGS RAS, 2015, pp. 257–262. (in Russian)
  4. Petrova, N.V., Didenko, V.I., Morozova, A.D. Razrabotka bazy dannykh “Sil’nye i oshchutimye zemletryaseniya Rossii i sopredel’nykh stran” [Development of the database “Strong and moderate earthquakes occurred in Russia and adjacent countries”]. In: Problemy kompleksnogo geofizicheskogo monitoring Dal’nego Vostoka Rossii [Problems of complex geophysical monitoring of the Russian Far East]. Proc. the 7th scientific and technical conference. D.V. Chebrov, Ed.-in-chief. Obninsk, GS RAS, 2019. pp. 191–196. http://www.emsd.ru/conf2019lib/mlib2.html (in Russian)
  5. Petrova, N.V., Dyagilev, R.A., Gabsatarova, I.P. Osobennosti zatukhaniya seismicheskogo effekta zemletryasenii Russkoi platformy i Urala [Features of attenuation of the seismic effect of earthquakes in the Russian platform and the Urals]. Voprosy inzhenernoi seismologii, 2020, vol. 47, no. 4, pp. 5–25. https://doi.org/10.21455/VIS2020.4-1 (in Russian)
  6. Radziminovich, Ya.B., Gileva, N.A., Seredkina, A.I., Mel’nikova, V.I. Dzhirga earthquake on April 27, 2014 with Kр = 13.3, Mw = 4.9, I0 = 7 (Northern Pribaikalia). In: Zemletryaseniya Severnoi Evrazii [Earthquakes of Northern Eurasia]. 2014, issue 23. Obninsk: FRC EGS RAS, 2020, pp. 307–316. DOI:10.35540/1818-6254.2020.23.31. (in Russian)

7. Spetsializirovannyi katalog zemletryasenii dlya zadach obshchego seismicheskogo raionirovaniya territorii Rossiiskoi Federatsii [Specialized catalog of earthquakes for general seismic zoning of the Russian Federation territory].V.I. Ulomov, N.S. Medvedeva, Eds. URL: http://seismos-u.ifz.ru/documents/Eartquake-Catalog.pdf (in Russian)

  1. Ulomov, V.I., Shumilina, L.S. Komplekt kart obshchego seismicheskogo raionirovaniya territorii Rossiiskoi Federatsii – OSR-97. Ob’yasnitel’naya zapiska i spisok gorodov i naselennykh punktov, raspolozhennykh v seismoopasnykh raionakh [Set of maps OSR-97-A, B, C of review seismic zoning of the Russian Federation territory — OSR-97. Scale 1:8 000 000. Explanatory note and list of cities and settlements located in earthquake prone areas]. Moscow, OIFZ, 1999, 57 p. (in Russian)
  2. Frolova, N.I., Ugarov, A.N. Baza znanii o sil’nykh zemletryaseniyakh kak instrument povysheniya nadezhnosti operativnykh otsenok poter’ [Knowledge base about past earthquakes as a tool to increase the reliability of near real time loss estimation]. Geoekologiya, 2018, no. 6, pp. 1-18. (in Russian)
  3. Frolova, N.I., Gabsatarova, I.P., Ugarov, A.N., Malaeva, N.S. Ispol’zovanie makroseismicheskikh dannykh dlya povysheniya nadezhnosti operativnykh otsenok poter’ na primere zemletryasenii stran SNG [The use of macroseismic data to improve the reliability of operational estimates of losses by the example of earthquakes in  CIS countries]. Proc.  XIII Int. seismological school “Modern methods of processing and interpretation of seismological data”. A.A. Malovichko, Ed.-in-Chief. Obninsk, EGS RAN, 2018, pp. 292-297. (in Russian)
  4. Frolova, N.I., Gabsatarova, I.P., Petrova, N.V., Ugarov, A.N., Malaeva, N.S. Vliyanie osobennostei zatukhaniya seismicheskoi intensivnosti na nadezhnost’ operativnykh otsenok poter’ ot zemletryasenii [Influence of shaking intensity attenuation peculiarities on reliability of earthquake loss estimation in emergency mode]. Geoekologiya, 2019, no. 5, pp. 23-37. (in Russian)
  5. Frolova, N.I., Gabsatarova, I.P., Ugarov, A.N., Malaeva, N.S. Kalibrovka modeli zatukhaniya seismicheskoi intensivnosti na primere zemletryasenii v Albanii [Seismic intensity attenuation model calibration by the example of earthquakes in Albania]. Geoekologiya, 2020, no. 5, pp. 62–77. DOI: 10.31857/S0869780920050033. (in Russian)
  6. Khain, V.E. Tektonika kontinentov i okeanov [Tectonics of continents and oceans]. Moscow, Nauchnyi mir Publ., 2001, 606 p.
  7. Shebalin, N.V. Metody ispol’zovaniya inzhenerno-seismologicheskikh dannykh pri seismicheskom raionirovanii [Procedures of engineering seismological data application for seismic zoning]. In: Seismicheskoe raionirovanie SSSR [Seismic zoning of the USSR]. Moscow, Nauka, 1968, pp. 95–121. (in Russian)
  8. Shebalin, N.V. Opornye zemletryaseniya i uravneniya makroseismicheskogo polya [Reference earthquakes and macroseismic field equations]. Novyi katalog sil’nykh zemletryasenii na territorii SSSR (s drevneishikh vremen do 1975 g) [New catalogue of strong earthquakes for the USSR territory from ancient times till 1975)]. Moscow, Nauka Publ., 1977, pp. 20–30. (in Russian)
  9. Shulakov, D.Yu. Utochnenie seismicheskoi opasnosti dlya raiona g. Permi [Verification of seismic hazard for the area of Perm]. Gornoe ekho, 2020, no. 3 (80), pp. 92–98. DOI: 10.7242 / echo.2020.3.18. (in Russian)
  10. Basham, P., Giardini, D. Technical guidelines for global seismic hazard assessment. Ann. Geofis., 1993, vol. XXXVI, no 3–4, pp. 15–20.
  11. Bindi, D., Spallarossa, D., Picozzi, M., Scafidi, D. & Cotton, F. Impact of magnitude selection on aleatory variability associated with Ground Motion Prediction Equations: Part I. Local, energy, and moment magnitude calibration and stress-drop variability in central Italy. Bull. Seism. Soc. Am., 2018, no. 108(3A), pp. 1427–1441.
  12. Bindi, D., Zaccarelli, R., Strollo, A., Giacomo, D. Harmonized local magnitude attenuation function for Europe using the European Integrated Data Archive (EIDA). Geophys. J. Int., 2019, no. 218, pp. 519–533.
  13. Bindi, D., Picozzi, M., Spallarossa, D., Cotton, F. & Kotha, S.R. Impact of magnitude selection on aleatory variability associated with Ground Motion Prediction Equations: Part II. Analysis of the between event distribution in central Italy. Bull. seism. Soc. Am., 2019, no. 109(1). DOI:10.1785/0120180239
  14. Bormann, P. (ed). IASPEI New manual of seismological observatory practice (NMSOP). Geo Forchungs Zentrum, Potsdam. Bormann, P., Baumbach, M., Bock, G., Grosser, H., Choy, G., Boatwright, J. Chapter 3. Seismic Sources and Source Parameters. 2012, 94 p.
  15. Deichmann, N. Theoretical basis for the observed break in ML/Mw scaling between small and large earthquakes. Bull. seism. Soc. Am., 2017, no. 107(2), pp. 505–520.
  16. Deichmann, N. Why does ML scale 1:1 with 0.5log Es? Seimol. Res. Lett., 2018, no. 89, pp. 2249–2255. https://doi.org/10.1785/0220180121
  17. Earthquake risk reduction in the Balkan region. UNDP project executed by UNESCO in association with UNDRO (RER/79/014). Working Group A. Seismology, seismotectonics, seismic hazard and earthquake prediction. Final Report. Athens, December 1982, 157 p.
  18. Grunthal, G. & Wahlstrom, R. The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium. J. Seismol., 2012, no. 16, pp. 535–570.
  19. Herak, M., Herak, D., Stipcevic, J. Seismology in Croatia, 2015-2018. Geofizika, 2019, vol. 36, no. 2, pp. 217–224. 
  20. Herak, M. Conversion between the local magnitude (ML) and the moment magnitude (Mw) for earthquakes in the Croatian Earthquake Catalogue. Geofizika, 2020, vol. 37, no. 2, pp. 197–211. DOI: 10.15233/gfz.2020.37.10.
  21. Ivancic, I., Herak, D, Markusic S., Sovic I., Herak, M. Seismology in Croatia in the period 1997–2001. Geofizika, 2001–2002, vol. 18–19, no. 2, pp. 17–29.
  22. Ivancic, I., Herak, D, Sovic I., Herak, M. Seismology in Croatia in the period 2002–2005. Geofizika, 2006, vol. 23, no. 2, pp. 87–103.
  23. Ivančić, I., Herak, D., Herak, M., Allegretti, I., et al. Seismicity of Croatia in the period 2006–2015. Geofizika, 2018, vol. 35, no. 1, pp. 69-98. DOI:10.15233/gfz.2018.35.2.
  24. Kanamori, H. Magnitude scale and quantification of earthquakes. Tectonophysics, 1983, no. 93, pp. 185-199. URL:http://dx.doi.org/10.1016/0040-1951(83)90273-1
  25. Kanamori, H., Hauksson, E., Hutton, L.K. & Jones, L.M. Determination of earthquake energy release and ML using TERRAscope. Bull. seism. Soc. Am., 1993, no. 83, pp. 330–346.
  26. Markušić, S., Herak, D., Ivancic, I., Sovic, I., et al. Seismicity of Croatia in the period 1993-1996 and the Ston-Slano earthquake of 1996. Geofizika, 1998, vol. 15, UDC 550.342.2.
  27. Markusic, S. and Herak, M. Seismic zoning of Croatia. Natural Hazards, 1999, no. 18, pp. 269-285.
  28. Markusic, S., Stanko, D., Korbar, T., Beli´c N., et al. The Zagreb (Croatia) M5.5 earthquake on 22 March 2020. Geosciences, 2020, no.10, pp. 252. DOI:10.3390/geosciences10070252.
  29. Markuši´c, S., Stanko, D., Penava, D., Ivanˇci´c, I., et al. Destructive M6.2 Petrinja Earthquake (Croatia) in 2020. Preliminary Multidisciplinary Research. Remote Sens., 2021, no. 13, p.1095. URL: https:// doi.org/10.3390/rs13061095
  30. Papazachos, C. & Papaioannou, Ch. The macroseismic field of the Balkan area. Journal of Seismology, 1997, no. 1, pp. 181–201.
  31. Papazachos, C. & Papaioannou, Ch. Further information on the macroseismic field in the Balkan area. Journal of Seismology, 1998, no. 2, pp. 363–375.
  32. Richter, C. An instrumental earthquake magnitude scale. Bull. Seism. Soc. Am., 1935, no. 25, pp. 1–32.
  33. Shebalin, N.V., Karnik, V., Had`ievski, D. (eds) Catalogue of earthquakes. Part I, 1901–1970, Part II, prior to 1901, Part III, Atlas of isoseismal maps. UNDP/UNESCO Survey of the seismicity of the Balkan region, Skopje.1974.
  34. Shebalin, N.V., Leydecker, G., Mokrushina, N.G., Tatevossian, R.E., Erteleva, O.O., Vassiliev, V.Yu. Earthquake Catalogue for Central and Southeastern Europe 342 BC – 1990 AD. Final Report to Contract ETNU –CT93-0087. 1998.