Geoekologiya, 2021, Vol. 5, P. 60-71


F. S. Karpenko*, K. N. Abrosimov**, O. V. Serebrova*

*Sergeev Institute of Environmental Geoscience, Russian Academy of Science, Ulanskii per., 13, bld. 2, Moscow, 101000 Russia 

**Dokuchaev Soil Science Institute, Pyzhevskii per. 7, bld. 2, Moscow, 119017 Russia

*E-mail: kafs08@bk.ru;
**E-mail: kv2@bk.ru

The paper considers important the issues of calculating the number of structural contacts in clay soils, which is an important physicochemical characteristic of their structure. The studies carried out by the computed X-ray tomography (X-ray mCT) proved the possibility of applying this method not only for analyzing clay microstructure, but also for direct calculation of the number of contacts between mineral particles. The research results permitted us to assess the number of contacts of various predominant types in the clay soil varieties and to obtain empirical dependences between the number of contacts in clays and their particle-size distribution. The obtained data correspond to the models of clay microstructures developed by V. N. Sokolov, i.e., the "bidisperse" model and the model of the "skewing playing card house".

Keywords: clay soils, structural contacts, type of contacts, number of contacts, structural composition, mCT, computed tomography


  1. Abrosimov, K.N., Makeev, A.O., Bagrova, S.M. Mikrostruktura i porovoe prostranstvo lessovykh otlozhenii nizhnei Volgi [Microstructure and pore space of loess sediments of the lower Volga]. Ekologiya i paleoekologiya pochv i paleopochv. Novosibirsk, Okarina Publ., 2017, pp. 7–12. (in Russian)
  2. Amelina, E.A., Shchyukin, E.D. Izuchenie nekotorykh zakonomernostei formirovaniya kontaktov v poristykh dispersnykh strukturakh [Study of some regularities of contact formation in porous dispersed structures]. Kolloidnyi zhurnal, 1970, vol. 32, no. 6, pp. 795-800. (in Russian)
  3. Babak, V.G. Prochnost’ poristykh tverdykh tel [Porous solids strength]. Extended abstract of Cand. Sci. (Phys.-Mat.) Dissertation, Moscow, Moscow St. Univ. Publ., 1970, 20 p. (in Russian)
  4. Gorbov, S.N., Bezuglova, O.S., Abrosimov, K.N., Skvortsova, Ye.B., Tagivediev, S.S., Morozov, I.V. Phizicheskie svoistva pochv Rostovskoi aglomeratsii [Physical properties of soils in the Rostov agglomeration]. Pochvovedeniye, 2016, no. 8, pp. 964–974. (in Russian)
  5. Karpenko, F.S. Fiziko-khimicheskaya priroda predelov plastichnosti glinistykh gruntov [Physicochemical nature of clayey soil plasticity limits]. Geoekologiya, 2018, no. 5, pp. 66-72. DOI: 10.1134/S86978031804004X. (in Russian)
  6. Karpenko F.S. Fiziko-khimkicheskaya priroda prochnosti glinistykh gruntov [Physicochemical nature of clayey soil strength]. Geoekologiya, 2019, no. 5, pp. 48-60. DOI: 10.31857/S869-78092019548-60. (in Russian)
  7. Osipov, V.I., Sokolov, V.N., Rumyantseva, N.A. Mikrostruktura glinistykh porod [Microstructure of clay soils]. E.M. Sergeev, Ed. Moscow, Nedra Publ. 1989, 210 p. (in Russian).
  8. Osipov, V.I. Fiziko-khimicheskaya teoriya effektivnykh napryazhenii v gruntakh [Physicochemical theory of effective stresses in soils]. Moscow, IGE RAN. 2012, 74 p. (in Russian)
  9. Osipov, V.I., Sokolov, V.N. Gliny i ikh svoistva. Sostav, stroeniye i formirovanie svoistv [Clays and their properties. Composition, structure and formation of properties]. Moscow, GEOS Publ. 2013. 576 p. (in Russian)
  10. Rebinder, P.A., Shchyukin, E.D., Margolis, L.Ya. O mekhanicheskoi prochnosti poristykh dispersnykh tel [On the mechanical strength of porous dispersed bodies]. DAN, 1964, vol. 154, no. 3. pp. 695–698. (in Russian)
  11. Sergeev, E.M., Golodkovskaya, G.A., Ziangirov, R.S. and etc. Gruntovedeniye [Soil and Rock Engineering]. Ed. 4. Moscow, Moscow St. Univ. Publ., 1983, 386 p. (in Russian)
  12. Sokolov, V.N. Fiziko-khimicheskie aspekty mekhanicheskogo povedeniya glinistykh gruntov [Physicochemical aspects of the mechanical behavior of clay soils]. Inzhenernaya geologiya, 1985, no. 4, pp. 28-41. (in Russian)
  13. Sokolov, V.N. Modeli mikrostruktur glinistylh gruntov [Clay microstructure models]. Inzhenernaya geologiya, 1991, no. 6, pp. 32-40. (in Russian)
  14. Shlykov, V.G. Rentgenovskii analiz mineral'nogo sostava dispersnykh gruntov [X-ray analysis of mineral composition of dispersed soils]. Moscow, GEOS Publ., 2006, 176 p. (in Russian)
  15. Abrosimov, K.N., Gerke K.M., Semenkov, I.N., Korost, D.V. Otsu’s algorithm in the segmentation of pore space in soils based on tomographic data. Eurasian Soil Science. 2021, vol. 54, no. 4. pp. 560–571. DOI: 10.1134/S1064229321040037
  16. Chiang, Martin Y.M., Landis, F.A., Xianfeng, Wang, Smith, J.R., Cicerone, M.T., Dunkers, J., Luo, Yanfeng. Local thickness and anisotropy approaches to characterize pore size distribution of three-dimensional porous networks. Tissue Eng. Part C: Methods. 2009. pp. 65-76. http://doi.org/10.1089/ten.tec.2008.0298 
  17. Field, W.G. Towards the statistical definition of a granular mass. Proc. 4th Australia-New Zealand Conf. on Solid Mechanics, 1963, pp. 143–148.
  18. Gray, W.A. The packing of solid particles. Chapman and Yall Ltd. 1968, 236 p.
  19. Lavrukhin, E.V., Gerke, K.M., Romanenko, K.A., Abrosimov, K.N., Karsanina, M.V. Assessing the fidelity of neural network-based segmentation of soil xct images based on pore-scale modelling of saturated flow properties. Soil and Tillage Research. 2021, vol. 209, p. 104942.
  20. Osipov, V.I., Karpenko, F.S., Rumyantseva, N.A. Active porosity and its effect on the physical mechanical properties of clay. Water Resources, 2015, vol. 42, no. 7, pp. 951-957.
  21. Romanis, T., Sedov, S., Lev, S., et al. Landscape change and occupation history in the Central Russian Upland from Upper Palaeolithic to Medieval: paleopedological record from Zaraysk Kremlin. Catena Publ., vol. 196, 2021, p. 104873, https://doi.org/10.1016/j.catena.2020.104873.
  22. Sorokin, A.S., Abrosimov, K.N., Lebedeva, M.P., Kust, G.S. Composition and structure of aggregates from compacted soil horizons in the southern steppe zone of European Russia. Eurasian Soil Science. 2016, vol. 49, no. 3. pp. 326–337.  DOI: 10.1134/S1064229316030108
  23. Yudina, A.V., Romanenko, K.A. Mechanistic understanding of soil hierarchical structure. EGU General Assembly 2019. https://doi.org/10.13140/RG.2.2.26167.16809
  24. Skvortsova, E.B., Shein, E.V., Abrosimov, K.N., Gerke, K.M., Korost, D.V., Romanenko, K.A., Belokhin, V.S., Dembovetskii, A.V. Tomography in soil science. Byulleten Pochvennogo instituta im. V.V. Dokuchaeva. 2016, vol. 86. pp. 28–34.
  25. Vogel, H.-J. Morphological determination of pore connectivity as a function of pore size using serial sections. European J. of Soil Sc. 1997. 48. pp. 365–377. https://doi.org/10.1111/j.1365-2389.1997.tb00203.x