ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Geoekologiya, 2021, Vol. 6, P. 68-80

BIOGEOCHEMICAL COMPOSITION OF SOILS OF TNE COAST OF TNE TATAR STRAIT IN WINTER  

L. A. Garetova*, E .L. Imranova, O. A. Kirienko, N. K. Fisher

Institute of Water and Ecological Problems, Far East Branch, Russian of Sciences,
Dikopoltseva str., 56, Khabarovsk, Russia, 680000 

*E-mail: micro@ivep.as.khb.ru

 

Assessment of the distribution of organic compounds and biotic components in soils in the winter (pre-growing) period contributes to obtaining the most complete information for understanding the processes of carbon accumulation in soils of various genesis and carbon exchange between soils, atmosphere, and hydrosphere. This study was carried out to assess the composition of OC (Corg), hydrocarbons (HC), volatile organic compounds (VOC) and biotic components (microorganisms and phytopigments) in various types of soils during winter period. Samples were collected from the main types of soils on the southwestern coast of the Tatar Strait: peat soils (Еuthrophic Histosols), burozems (Cаmbisols), and technogenic soils (Technosols). The winter period is characterized by attenuation of most biochemical processes in the soil and fixes the composition of OC and biotic components at the end of the growing season. In peat soils, the Corg content was 42-45, in burozems 10.0-32.7, and in technozems 7.3-17.9%. The HC content was 590-2780, 130-210, and 110-130 mg/kg, respectively. The study of the molecular weight distribution of n-alkanes made it possible to establish that natural hydrocarbons in peat soils are able to form levels significantly (6-28 times) higher than the background indicators of HC content. The accumulation in soils of a significant (up to 25.03 mg/dm3) amount of VOCs is due to the presence of low temperatures and snow cover, which prevent their evaporation and migration into the conjugated environments. VOCs are dominated by microbiological transformation products (acetone, acetaldehyde, methanol). The total number of heterotrophic bacteria varied depending on the type of soil (from 0.8 to 68.6 million CFU/g). The proportion of oil-oxidizing bacteria ranged from 18.2 to 87% of the number of heterotrophs; the number of micromycetes varied from 1.5 to 38.4 thousand CFU/g. The pigments in all types of soils were dominated by carotenoids (Chl. a/car = 0.09-0.68), which is associated with their resistance to oxidation and biodegradation. The microbial and / or microbial-destructive component ∑C20-C25 = 19.7-20.5% plays a significant role in the process of restoration of the organogenic horizon of technogenic soils, which is consistent with the maximum (68.6 million CFU/g) number of heterotrophic bacteria, among which the ability to oxidize oil was up to 87%. The absence of actinomycetes in peat soils is due to low (4.08-4.7) pH values and excessive waterlogging.

Keywords: peat soil, burozems, technozems, organic compound, hydrocarbons, n-alkanes, phytopigments, microorganisms, volatile organic compounds.

 

REFERENCES

  1. Babenko, V.V., Polenov, Yu.A., Ogorodnikov, V.N. Rol' intruzivnogo magmatizma v genezise Berezovskogo zolotorudnogo mestorozhdeniya (Srednii Ural) [The role of intrusive magmatism in the genesis of the Berezovskoe gold ore deposit (the Middle Urals)]. Izvestiya Ural'skogo gosudarstvennogo gornogo universiteta. 2016, no. 1 (41), pp. 39-49. (in Russian)

2. Anohina, N.A., Demin, V.V., Zavgorodnjaja, Ju.A. Sostav n-alkanov i n-metil-ketonov v pochvah parkovoj zony Moskvy [Composition of n-alkanes and n-methyl-ketones in the soils of the park zone of Moscow]. Pochvovedenie, 2018, no. 6, pp. 683–692. (in Russian)

2. Bazhenova, O.K., Burmin, Ju.K., Sokolov, B.A., Hain, V.E. Geologija i geohimija nefti i gaza [Geology and geochemistry of oil and gas]. Moscow,MGU, 2004, pp.144‒181. (in Russian)

3. Vodjanickij, Ju.N. Tendencii razvitija himii pochv [Evelopment trend of soil chemistry]. Bjulleten' Pochvennogo instituta imeni V.V. Dokuchaeva, 2010, no. 66, pp. 64–82. (In Russian)

4. Gabov, D.N., Beznosikov, V.A., Kondratenok, Ju.M., Gruzdev, I.V. Nasyshhennye uglevodorody v fonovyh i zagrjaznennyh pochvah Predural'ja [Saturated hydrocarbons in background and contaminated soils of Preduralie]. Pochvovedenie, 2010, no. 10, pp. 1190–1196. (in Russian)

5. Garetova, L.A., Fisher, N.K., Imranova, E.L., Kirienko, O.A., Koshhel'kov, A.M. Osobennosti formirovanija organicheskih soedinenij v gruntah i donnyh otlozhenijah promzony g. Habarovsk [Features of the formation of organic compounds in soils and bottom sediments of the industrial zone of the city of Khabarovsk ]. Geohimija, 2021, tom 66, no.5, pp. 464–472. (in Russian)

6. Gennadiev, A.N., Zavgorodnjaja, Ju.A., Pikovskij, Ju.I., S., Smirnova, M.A. Alkany kak komponenty uglevodorodnogo sostojanija pochv: povedenie, indikacionnoe znachenie [Alkanes as components of the hydrocarbon state of soils: behavior, indicative value]. Pochvovedenie, 2018, no. 1, pp. 37–47. (in Russian)

7. Gennadiev, A.N., Pikovskij, Ju.I., Smirnova, M A., Zhidkin, A.P., Kovach, R.G. Uglevodorody v pochvah fonovyh taezhnyh landshaftov (jugo-zapadnaja chast' Ust'janskogo plato) [Hydrocarbons in the soils of the background taiga landscapes (southwestern part of the Ustyansky plateau)]. Vestnik Mosk. un-ta. Ser. 5, geografija, 2016, no. 3, pp. 90–97. (in Russian)

8. Gljaznetsova, Ju.S., Chalaja, O.N., Lifshi,c S.H., Zueva, I.N. Monitoring sostojanija neftezagrjaznennyh pochv kriolitozony [Monitoring of the state of oil-contaminated soils of the permafrost zone]. PJeMMJe, XXIX. 2018, no. 4, pp. 111–128. (in Russian)

9. Golovchenko, A.V., Dobrovol'skaja, T.G., Semenova, T.A., Bogdanova, O.Ju., Kuharenko, O.S. Vlijanie temperatury na strukturu mikrobnyh soobshhestv verhovogo torfjanika (model'nyj opyt) [Influence of temperature on the structure of microbial communities of high-moor peat bog (model)]. Vestnik TGPU, 2010, vol. 3(93), pp. 92–100. (in Russian)

10. Egorov, N.S. Rukovodstvo k prakticheskim zanjatijam po mikrobiologii [A guide to practical exercises in microbiology]. Moscow, MGU, 1995, 224 p. (in Russian)

11. Ermakov, V.V. Geohimicheskaja jekologija i biogeohimicheskie kriterii ocenki jekologicheskogo sostojanija taksonov biosfery [Geochemical ecology and biogeochemical criteria for assessing the ecological state of taxa of the biosphere]. Geohimija, 2015, no .3, pp. 203–221. (in Russian)

12. Erofeevskaja, L.A. Razrabotka sposoba ochistki merzlotnyh pochv i gruntov ot neftezagrjaznenij v prirodno-klimaticheskih uslovijah Jakutii diss kandidata biologicheskih nauk [Development of a method for cleaning permafrost soils and soils from oil pollution in the natural and climatic conditions of Yakutia]. Candidate Sci. (Biolog.) dissertation. Jakutsk, 2018. 248 p. (in Russian)

13. Inisheva, L.I., Judina, N.V., Golovchenko, A.V., Savel'eva, A.V. Biohimicheskie faktory formirovanija sostava bolotnyh vod i migracija veshhestv v sisteme geohimicheski soprjazhennyh landshaftov oligotrofnyh bolot [Biochemical factors of the formation of the composition of bog waters and the migration of substances in the system of geochemically coupled landscapes of oligotrophic bogs]. Pochvovedenie, 2021, no. 4, pp. 420–428. (in Russian)

14. Kremleva, T.A. Geohimicheskie faktory ustojchivosti vodnyh sistem k antropogennym nagruzkam. [Geochemical factors of stability of water systems to anthropogenic loads]. Doktoral Sci. (Chem.) dissertation, Tyumen, Tyumen State University, 2015, 260 p. (in Russian)

15. Kudejarov, V.N., Zavarzin, G.A., Blagodatskij, S.A., Borisov, A.V., et al. Puly i potoki ugleroda v nazemnyh jekosistemah Rossii [Bullets and fluxes of carbon in terrestrial ecosystems in Russia]. Moscow, Nauka, Publ., 2007, 315 p. (in Russian)

16. Lipatov, D.N., Shheglov, A.I., Manahov, D.V., Brehov, P.T. Prostranstvennaja izmenchivost' zapasov organicheskogo ugleroda v torfjanyh pochvah i gleezemah severo-vostoka ostrova Sahalin [Spatial variability of organic carbon stocks in peat soils and gleys in northeastern Sakhalin Island]. Pochvovedenie, 2021, no. 2, pp. 211–223(in Russian)

17. Marfenina, O.E., Nikitin, D A., Ivanova, A.E. Struktura gribnoj biomassy i raznoobrazie kul'tiviruemyh mikromicetov v pochvah Antarktidy (stancija Progress i Russkaja) [The structure of fungal biomass and the diversity of cultivated micromycetes in the soils of Antarctica (Progress and Russkaya stations)]. Pochvovedenie, 2016, no. 8, pp. 991–999(in Russian)

18. Namsaraev, B.B., Rusanov, I.I., Mickevich, I.N., Veslopolova, E.F., Bol'shakov, A.M., et al. Mikrobnoe nekul'tiviruemoe soobshhestvo osadkov Gydanskoj guby i Enisejskogo zaliva Karskogo morja [Microbial uncultivated community of sediments of the Gydan Bay and the Yenisei Bay of the Kara Sea]. Okeanologija, 2014, vol. 54, no. 3, pp. 338–348. (in Russian)

19. Nikanorov, A.M., Bryzgalo, V.A. Antropogennaja nagruzka na ust'evye oblasti rek Dal'nego Vostoka v sovremennyh uslovijah [Anthropogenic load on the estuarine areas of the rivers of the Far East in modern conditions]. Voda: himija i jekologija, 2012, no. 2, pp. 11–17. (in Russian)

20. Odintsova, T.A. Razrabotka tehnologii identifikacii i monitoringa neftjanyh zagrjaznenij. Avtoref. diss. kand.tehn. nauk [ Development of technology for identification and monitoring of oil pollution]. Extended abstract Cand. sci. (Techn) dissertation. Perm, Mining Institute URO RAN, 2010. 24 p. (in Russian)

21. Petrov, E.S., Novorockij, P.V., Lenshin, V.T. Klimat Habarovskogo kraja i Evrejskoj avtonomnoj oblasti [The climate of the Khabarovsk Territory and the Jewish Autonomous Region]. Vladivostok-Habarovsk, Dal'nauka, 2000. 203 p. (in Russian)

22. Pikovskij, Ju.I., Gennadiev, A.N., Chernjanskij, S.S., Saharov, G.N. Problemy diagnostiki i normirovanija zagrjaznenija pochv neft'ju i nefteproduktami [Problems of diagnostics and regulation of soil pollution by oil and oil products]. Pochvovedenie, 2003, no. 9, pp. 1132–1140. (In Russian)

23. Pikovskij, Ju.I., Smirnova, M.A., Gennadiev, A.N., Zavgorodnjaja, Ju.A., et al. Parametry samorodnogo uglevodorodnogo sostojanija pochv razlichnyh bioklimaticheskih zon [Parameters of the natural hydrocarbon state of soils in different bioclimatic zones]. Pochvovedenie, 2019, no. 11, pp. 1307–1321. (in Russian)

24. Sigareva, L.E. Hlorofill v donnyh otlozhenijah Volzhskih vodoemov [Chlorophyll in bottom sediments of the Volga reservoirs]. Moscow, Tovarishhestvo nauchnyh izdanij KMK, 2012. 217 p. (in Russian)

25. Fedotov, G.N., Lysak, L.V. O vozmozhnoj roli mikroorganizmov v obrazovanii gumusovyh veshhestv v pochvah [On the possible role of microorganisms in the formation of humic substances in soils]. Doklady akademii nauk, 2014, vol. 455, no. 1, pp. 114–117. (in Russian)

26. Shhemelinina, T.N., Anchugova, E M., Lapteva, E.M., Vasilevich, R.S., et al. Modelirovanie tehnologii “konturnogo zavodnenija” v mikrokosmah [Microcosm modeling of “contour flooding” technology]. Pochvovedenie, 2020, no. 2, pp. 219–229. (in Russian)

27. Judina, N.V., Savel'eva, A.V. Uglevodorody v rastenijah torfoobrazovateljah i torfah oligotrofno-evtrofnyh bolot Zapadnoj Sibiri [Hydrocarbons in peat-forming plants and peats of oligotrophic-eutrophic bogs in Western Siberia]. Geohimija, 2008, no. 1, pp. 84–91(in Russian)

28. Bush, R.T., Mcinerney, F.A. Influence of temperature and C4 abundance on n-alkane chain length distributions across the central USA. Organic Geochemistry. 2015, no. 79, pp. 65–73.

29. Chen, Y., Day, S.D., Shrestha, R.K., Strahm, B.D., Wiseman, P.E. Influence of urban land development and soil rehabilitation on soil– atmosphere greenhouse gas fluxes. Geoderma, 2014, vol. 226–227, pp. 348–353.

30. Gocke, M., Wiesenber, G.L.B., Kuzyakov, Y. Differentiation of plant derived organic matter in soil, loess fnd rhizoliths based on n-alkane molecular proxites. Biogeochemistry. 2013, vol. 112, no. 1–3, pp. 23–40.

31. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soil and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2015).

32. Kuhn, Th.K., Krull, E.S., Bowater, A., Grice, K., Gleixner, G. The occurrence of short chain n-alkanes with an even over odd predominance in higher plants and soils. Organic Geochemistry. 2009, vol. 41, no. 2, pp. 88–95.

33. Malone, R., Warner, R.W., Evangelou, V.P., Wong, J.L. Transport of benzene and trichloroethylene through landfill soil liner mixed with coal slurry. Waste Management Res. 1994, vol. 12, pp. 417–428.

34. Panikov, N.S. Subzero Activity of Cold-Adapted Yeasts. In Cold-Adapted Yeasts. Berlin: Springer, 2014, pp. 295–323.

35. Peters, K.E., Walters, C.C., Moldowan, J.M. The biomarker guide. Second Edition I, II, Cambridge: University Press, 2005. 1155 p.

36. Serrano-Silva, N., Sarria-Guzman, Y., Dendooven, L., Luna-Gudo, M. Methanogenesis and Methanotrophy in Soil: A Review. Pedosphere, 2014, vol. 24, no. 3, pp. 291–307.

37. Soares, A.A., Albergaria, J.T., Domingues, V.F., Conceicao, M., et al. Remediation of soils combining soil vapor extraction and bioremediation: Benzene. Chemosphere, 2010, vol. 80, no. 7, pp. 823–828.

38. Sojinu, S.O., Sonibare, O.O., Ekundayo, O., Zeng, E.Y. Assessing anthropogenic contamination in surface sediments of Niger Delta, Nigeria with fecal sterols and n-alkanes as indicators. Sci. Total Environ., 2012, vol. 441, pp. 89–96.

39. Wakelin, S.A., Macdonald, L.M., Rogers, S.L., Gregg, A.L., Bolger, T.P., Baldock, J.A. Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biol. Biochemistry.2008, vol. 40, no. 3, pp. 803–813.