ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Geoekologiya, 2021, Vol. 2, P. 17-26

GEOECOLOGICAL ASPECTS OF GEOTHERMAL POWER ENGINEERING 

S. V. Cherkasov1,*, A. M. Farkhutdinov2, I. M. Farkhutdinov1


1Vernadsky State Geological Museum RAS, ul. Mokhovaya 11, bld. 11, Moscow, 125009 Russia
2Bashkir State University, ul. Zaki Validi, 32, Ufa, 450076 Russia
*E-mail: s.cherkasov@sgm.ru 

Geoecological aspects of geothermal power engineering are related to the existing technologies in using the Earth's heat. It is both the direct use (the use of hot groundwater for heat production, i.e., hydrothermal systems), and the production of electricity (enhanced  geothermal systems, EGS, as well as geothermal systems based on natural steam-water mixtures, i.e., petro- and hydrothermal systems, respectively).  The advantages of using geothermal resources in relation to other energy sources are considered in geoecological respect. Geoecological risks associated with the operation of geothermal natural and man-made systems are considered. These risks are related to possible chemical contamination resulting from the mineralized groundwater spills on the surface, with technological change in hydrodynamic equilibrium, with the depletion of the reservoir and lowering the temperature of underground waters caused by reinjection of the cooled heat-transfer fluid. These risks could be minimized by full reinjection of the used fluid, monitoring of heat-transfer fluid leaks, microseismic activity monitoring in the area of operation of petrothermal resources, predicting negative processes using computer mathematical modeling methods, and optimizing circulation systems for heat extraction.The experience of minimizing geoecological risks by the example of the Khankala experimental industrial geothermal station is considered in the article. The advantage of hydrothermal natural and technogenic systems over petrothermal ones at the current level of development of drilling and heat extraction technologies is proved proceeding from the qualitative analysis of geoecological risks and existing heat extraction technologies. It is determined that the deposits of geothermal water with full reinjection of the used fluid is the most environmentally friendly renewable energy source that does not depend on weather conditions. At the same time, it is noted that the technologies created for hydrothermal natural and human-made systems form the basis for both improving the efficiency of hydrothermal and petrothermal energy development.  

Keywords: geoecological risks, geothermal groundwater, geothermal resources, hydrothermal systems, renewable energy

REFERENCES

  1. Avetisyantz, A.A., Krylov, V.B. Opyt stroitel'stva tsirkulyatsionnoi sistemy na Khankal'skom geotermal'nom mestorozhdenii [Experience in the construction of a circulation system at the Khankala geothermal field]. Fizicheskie protsessy pri razrabotke geotermal'nykh mestorozhdenii [Physical processes in the exploitation of geothermal deposits]. Leningrad, LGI Publ., 1983, pp. 85-88. (in Russian)
  2. Alkhasov, A.B. Vozobnovlyaemaya energetika [Renewable energy]. Moscow, Fizmatlit Publ., 2012, 256 p. (in Russian)
  3. GOST Р 56909-2016. Netraditsionnye tekhnologii. Geotermal'naya energetika. Terminy i opredeleniya [State Standard Р 56909-2016. Nontraditional technologies. Geothermal energy. Terms and definitions]. Moscow, Standartinform Publ., 2016, 12 p. (in Russian)
  4. Pravila razrabotki mestorozhdenii teploenergeticheskikh vod PB 07-599-03 [Rules for the exploitation of thermal energy water deposits 07-599-03]. Moscow. State unitary enterprise «Scientific and technical center for industrial safety of Gosgortekhnadzor of Russia». 2003, 8 p. (in Russian)
  5. Farhutdinov, A.M.,  Ismagilov, R.A., Farhutdinov, I.M., Cherkasov, S.V., Mintsaev, M.Sh. Perspektivy ispol'zovaniya teploenergeticheskikh vod Chechenskoi Respubliki na baze opyta analogichnykh rabot vo Frantsii (Parizhskii bassein) [Prospects for the use of geothermal waters of the Chechen Republic on the basis of the experience of similar works in France (Paris basin)]. Vestnik Tomskogo gosudarstvennogo universiteta, 2015, no. 398, pp. 257-264. (in Russian)
  6. Farkhutdinov, A.M., Farkhutdinov, I.M., Cherkasov, S.V., Ismagilov, R.A., Khairulina, L.A. Primenenie komp'yuternogo modelirovaniya dlya ustoichivoi ekspluatatsii termal'nykh podzemnykh vod Khankal'skogo mestorozhdeniya [Use of computer modeling for sustainable exploitation of the Khankala geothermal water]. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2019, vol. 330, no. 12, pp. 7-17. (in Russian)
  7. Farkhutdinov, A.M., Cherkasov, S.V., Mintsaev, M.Sh., Shaipov, A.A. Termal'nye podzemnye vody Chechenskoi Respubliki: novyi etap ispol'zovaniya [Geothermal waters of the Chechen Republic: a new stage of use]. Priroda, 2017, no. 3 (1219), pp. 28-35.
  8. Cherkasov, S.V., Farkhutdinov,A.M., Shaipov, A.A. Ob effekte ostatochnogo debita geotermal'noi tsirkulyatsionnoi sistemy teplootbora [On residual flow effect in a geothermal loop]. Doklady Rossiiskoi Akademii Nauk. Fizika, tekhnicheskie nauki, 2020, vol. 491, pp. 90-92. (in Russian)
  9. Cherkasov, S.V., Churikova, T.G., Bekmurzaeva, L.R., Gordeichik, B.N., Farkhutdinov, A.M. Sostoyanie i perspektivy ispol'zovaniya geotermal'nykh resursov v Rossiiskoi Federatsii [State-of-art and prospects for the use of geothermal resources in the Russian Federation]. GEOENERGY. Proc. International Scientific and Practical Conference, 2015, pp. 303-322. (in Russian)
  10. Axelsson, G. Role and management of geothermal reinjection. Short course on geothermal development and geothermal wells. Santa Tecla, Salvador, UNU-GTP Publ., 2012, 21 p.
  11. Baisch, S., Carbon, D., Dannwolf, U., Delacou, B., Devaux, M., Dunand, F., Jung, R., Koller, M., Martin, C., Sartori, M., Secanell, R., Vör, R. Deep heat mining Basel - seismic risk analysis. Basel, SERIANEX Publ., 2009. 21 p.
  12. Battye, D. L., Ashman, P. J. Radiation associated with Hot Rock geothermal power. Australian Geothermal Energy Conference, 2009. URL: https://www.geothermal-energy.org/pdf/IGAstandard/AGEC/2009/Battye__Ashman_2009.pdf
  13. Bošnjaković, M., Stojkov, M., Jurjević, M. Environmental impact of geothermal power plants. Technical Gazette, 2019, vol.26 (5), pp. 1515-1522. https://doi.org/10.17559/TV-20180829122640
  14. Brown, K., Webster-Brown, J. Environmental impacts and mitigation. In Geothermal energy: utilization and technology. Dickson M.H., Fanelli M. (ed.) Routledge. 2013. P. 155-171. https://doi.org/10.4324/9781315065786
  15. Cherkasov, S.V., Farkhutdinov, A.M., Rykovanov, D.P., Shaipov, A.A. The use of unmanned aerial vehicle for geothermal exploitation monitoring: Khankala field example. Journal of Sustainable Development of Energy, Water and Environment Systems, 2018, vol. 6, no 2, pp. 351-362.
  16. Farkhutdinov, Α., Goblet, P., de Fouquet, C., Cherkasov, S. Α case study of the modeling of a hydrothermal reservoir: Khankala deposit of geothermal waters. Geothermics, 2016, vol. 59, part Α, pp. 56-66. http://dx.doi.org/10.1016/j.geothermics.2015.10.005 
  17. Gunnarsson, I., Aradóttir, E. S., Sigfússon, B., Gunnlaugsson, E., and Júlíusson, B. M. Geothermal gas emission from Hellisheiði and Nesjavellir power plants, Iceland. GRC Transactions. 2013, vol. 37, pp. 785-789.
  18. Holl, H.-G. What did we learn about EGS in the Cooper Basin? Milton, Australia: Geodynamics Limited, 2015, 79 p. DOI: 10.13140/RG.2.2.33547.49443
  19. Limberger, J., Boxemb, T., Pluymaekers, M., Bruhn, D., Manzella, A., Calcagno, P., Beekman, F., Cloetingh, S., Van Wees, J.D. Geothermal energy in deep aquifers: a global assessment of the resource base for direct heat utilization. Renewable and Sustainable Energy Reviews. 2018, no. 82, pp. 961–975.
  20. Parisio, F., Vilarrasa, V., Wang, W., Kolditz, O., Nagel, Th. The risks of long-term re-injection in supercritical geothermal systems. Nature Communications, 2019, vol. 10, pp. 4391. https://doi.org/10.1038/s41467-019-12146-0.
  21. Schill, E., Genter, A., Cuenot, N., Kohl, T. Hydraulic performance history at the Soultz EGS reservoirs from stimulation and long-term circulation tests. Geothermics, 2017, vol. 7, pp. 110-124.
  22. Tomarov, G., Kolesnikov, D., Semenov, V., Podverbny, V., Shipkov, A. Prevention of corrosion and scaling in geothermal power plants equipment. Proc. World Geothermal Congress 19-25 April 2015. Melbourne, Australia, 2015, 6 p. URL: https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2015/27032.pdf
  23. Vengosh, A., Hirschfeld, D.,Vinson, D., Dwyer, G., Raanan, H., et al. High naturally occurring radioactivity in fossil groundwater from the Middle East. Environ. Sci. Technol., 2009, vol. 43, no. 6, pp. 1769-1775.
  24. Walczak, K., Olszewski, J., Zmyślony, M. Estimate of radon exposure in geothermal SPAs in Poland. Int J Occup Med Environ Health. 2016, vol. 29(1), pp.161–166.
  25. Zemach, E., Drakos, P., Spielman, P., Akerley, J. Desert Peak East enhanced geothermal systems (EGS) project. Draft Final Report. Reno, NV, USA: Ormat Technologies, Inc. 2017, 87 p.
  26. Zotzmann, J., Regenspurg, S. Evaluating the efficiency of scaling inhibitors in geothermal fluids at high pressures and high temperatures. Proceedings World Geothermal Congress 19-25 April 2015. Melbourne, Australia, 2015. 5 p., URL: https://gfzpublic.gfz-potsdam.de/pubman/item/item_1267890