Geoekologiya, 2021, Vol. 2, P. 86-95


E.V. Polyakova*, Yu.G.Kutinov, A.L.Mineev, Z.B.Chistova


Laverov Federal Center for Integrated Arctic Research, 163000, Arkhangelsk, nab. Severnoi Dviny 23, Arkhangel'sk, 163000 Russia.
*E-mail: lenpo26@yandex.ru

This article shows the relationship of pollution sources with the natural zones of material drift, transit and accumulation identified on the basis of a digital elevation model as a result of geomorphometric analysis using the territory of the Arkhangelsk region as an example. As a result of data comparison, a spatial coincidence of the sources of anthropogenic environmental impact with the natural accumulation zone identified on the basis of the calculation of geomorphometric relief parameters (Slope, LS factor, Terrain Ruggedness Index and Topographic Wetness Index) was found. The confinement of the zones of forestry impact to the natural zones of demolition and, to a greater extent, the transit of material distinguished according to the same parameters is also shown. To identify local areas of sediment accumulation for the purpose of sampling for soil pollution assessment monitoring, it is more appropriate to use the calculation of surface curvatures. The geomorphometric approach, unlike the one used by the Russian Hydrometeorological Service (according to an approximately uniform network), allows one to estimate the areas of pollutant accumulation at different levels of detail – from regional to local. It is in these areas that regular ground monitoring is necessary, and not the distribution of observation points evenly over the entire area.


Keywords: digital elevation model, geomorphometric parameters, pollution source, Arkhangelsk region 


  1. Gleizer, I.V., Kopaneva, I.M., Rubleva, E.A. Nekotorye aspekty ispol'zovaniya GIS-tekhnologii pri morfometricheskom analize rel'efa [Some aspects in using GIS-technologies upon morfometric analysis of the relief]. Vestnik Udmurtskogo universiteta, 2006, no. 11, pp. 143-146 (in Russian)
  2. Gubaidullin, M.G. Geoekologicheskie usloviya osvoeniya mineral'no-syr'evykh resursov Evropeiskogo Severa Rossii [Geoenvironmental conditions of mineral resources development in the European North of Russia]. Arkhangel'sk, Pomorskii universitet Publ., 2002, 310 p. (in Russian)
  3. Isachenko, A.G. Fiziko-geograficheskaya kharakteristika regiona [Physico-geographical characteristics of the region]. Sostoyanie okruzhayushchei sredy Severo-Zapadnogo i Severnogo regionov Rossii [The environment state in the North-Western and Northern regions of Russia]. St. Petersburg, Nauka Publ., 1995, pp. 7-30 (in Russian)
  4. Kutinov, Yu.G., Mineev, A.L., Polyakova, E.V., Chistova, Z.B. Vybor bazovoi tsifrovoi modeli rel'efa (TsMR) ravninnykh territorii Severa Evrazii i ee podgotovka dlya geologicheskogo raionirovaniya (na primere Arkhangel'skoi oblasti) [Selection of basic digital elevation model (DEM) for Eurasian North plains and its validation for geological zoning (by the example of Arkhangel'skaya oblast)]. Penza, Sotsiosfera Publ., 2019, 176 p. (in Russian)
  5. Mineev, A.L., Kutinov, Yu.G., Chistova, Z.B., Polyakova, E.V. Podgotovka tsifrovoi modeli rel'efa dlya issledovaniya ekzogennykh protsessov severnykh territorii Rossiiskoi Federatsii [Validation of digital elevation model for the study of exogenous processes in the northern areas of the Russian Federation]. Prostrnastvo i vremya,  2015a, no. 3(21), pp. 278-291 (in Russian)
  6. Mineev, A.L., Kutinov, Yu.G., Chistova, Z.B., Polyakova, E.V. Geoekologicheskoe raionirovanie territorii Arkhangel'skoi oblasti s ispol'zovaniem tsifrovykh modelei rel'efa i GIS-tekhnologii Geoenvironmental zoning of the Arkhangelsk oblast territory using DEMs and GIS-technologies]. Prostranstvo i vremya, 2017, no. 2-3-4(28-29-30), pp. 267-288. (in Russian)
  7. Mineev, A.L., Polyakova, E.V., Kutinov, Yu.G., Chistova, Z.B. Metodicheskie aspekty sozdaniya tsifrovoi modeli rel'efa Arkhangel'skoi oblasti na osnove STER GDEM V.2 [Methodical aspects of DEM development for Arkhangel'skaya oblast based on STER GDEM V.2]. Sovremennye problemy nauki i obrazovaniya, 2015b, no. 2; URL: www.science-education.ru/129-21949 (in Russian)


  1. Mineev, A.L., Polyakova, E.V., Kutinov, Yu.G., Chistova, Z.B. Nadezhnost' tsifrovoi modeli rel'efa Arkhangel'skoi oblasti dlya provedeniya geoekologicheskikh issledovanii [Reliability of digital elevation  model for Arkhangelsk oblast for  geoecological studies]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, vol. 15, no. 4, pp. 58-67. https://doi.org/10.21046/2070-7401-2018-15-4-58-67 (in Russian)
  2. Minyaev, A.P., Yudakhin, F.N. Ekologicheskie problemy Arkhangel'skoi oblasti [Ecological problems in Arkhangel'sk oblast]. Ekologicheskie problemy Evropeiskogo Severa [Ecological problems of the European North]. Yekaterinburg, UrO RAN Publ., 1996, pp. 3-9 (in Russian)
  3. Opasnye ekzogennye protsessy [Hazardous exogenous processes]. Osipov, V.I., Ed., Мoscow, GEOS, 1999, 290 p. (in Russian)
  4. Polyakova, E.V. Geomorfometricheskii podkhod v geoekologicheskikh issledovaniyakh severnykh territorii strany [Geomorfometric approach in geoecological studies of the northern regions of the country]. Uspekhi sovremennogo estesvoznaniya, 2018, no. 3, pp. 117-122. https://doi.org/10.17513/use.36712 (in Russian)
  5. Polyakova, E.V., Kutinov, Yu.G., Mineev, A.L., Chistova, Z.B. Tsifrovoe modelirovanie rel'efa v otsenke veroyatnosti razvitiya erozionnykh protsessov v severnykh regionakh strany [Digital elevation modeling in assessing the probability of development of exogenous processes in the northern regions of the country]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, vol. 16, no. 1, pp. 95-104. https://doi.org/10.21046/2070-7401-2019-16-1-95-104 (in Russian)
  6. Toskunina, V.E. Problemy lesnogo kompleksa Arkhangel'skoi oblasti i puti ikh resheniya [Problems of forest complex in the Arkhangelsk oblast and ways to solve them]. Ekonomicheskie i sotsial'nye peremeny: fakty, tendentsii, prognoz, 2008, issue 3(3), pp. 29-31. (in Russian)
  7. ASTER Global Digital Elevation Model Version 2 – Summary of Validation Results / ASTER GDEM Validation Team: METI/ERSDAC, NASA/LPDAAC, USGS/EROS, 2011. http://www.jspacesystems.or.jp/ersdac/GDEM/ver2Validation/Summary_GDEM2_validation_report_final.pdf
  8. Doumit, J.A., Awad, S.F. DEM Spatial resolution impact on hillslope erosion and deposition modeling, an application on Lebanese watersheds. Sustainability in Environment, 2019, vol. 4(2), pp. 75-85. http://dx.doi.org/10.22158/se.v4n2p75
  9. Geomorphometry: Concepts, Software, Applications. Hengl, T., Reuter, H.I. (Eds.). Amsterdam, Elsevier, 2009. 796 p.
  10. Morissette, L., Chartier, S. The k-means clustering technique: General considerations and implementation in Mathematica. Tutorials in Quantitative Methods for Psychology, 2013, vol. 9(1), pp. 15-24. http://dx.doi.org/10.20982/tqmp.09.1.p015
  11. Reily, Sh.J., DeGloria, St.D., Elliot, R. A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain Journal of Science, 1999, vol. 5(1-4), pp. 23-27
  12. Vatti, B.R. A generic solution to polygon clipping. Communications of the ACM, 1992, vol. 35(7), pp. 5663. URL: http://dx.doi.org/10.1145/129902.129906