ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Geoekologiya, 2021, Vol. 3, P. 88-94

DYNAMIC EXTRACTION OF ELEMENTS FROM SOILS IN TECHNOGENIC LANDSCAPES    

B. V. Dampilova1,*, S. G. Doroshkevich1,**, O. K. Smirnova1,***,
P. S. Fedotov2,****

1Geological Institute, Siberian Branch, Russian Academy of Sciences,
ul. Sakh'yanovoi, 6a, Ulan-Ude, 670047 Russia

2Vernadsky Institute of Geochemistry and Analytical 
Chemistry, 
Russian Academy of Sciences,
ul. Kosygina, 19,
Moscow, 670047 Russia

*E-mail: bdampilova@geo.stbur.ru 
**E-mail: dorosh@ginst.ru
***E-mail: meta@ginst.ru 
****E-mail: fedotov_ps@mail.ru
 

Samples of soils exposed to long-term impact of acid mine waters were studied. The gross content of elements in the samples exceeds the maximum permissible concentrations and varies within wide limits: for lead - from 26.4 to 638 mg/kg, for copper - from 121 to 2266 mg/kg, for cadmium - from 6.7 to 50.6 mg/kg. Zinc, cadmium, copper, lead, nickel, manganese, and molybdenum forms were extracted  in a dynamic mode in microcolumns according to a five-stage fractionation scheme, with the release of exchangeable/water-soluble, acid-soluble, easily reducible, easily oxidizable and hardly reducable forms. Microcolumns made of fluoroplastic consist of three main parts, i.e., a central container for the sample and two caps with holes for pumping the reagent. To prevent the removal of samples from the microcolumn, membrane filters with a pore size of 0.8 μm were used. The correspondence of the total content of elements in the extractable and residual fractions to their gross content indicates the absence of sample losses during extraction in microcolumns. Elution curves of elements were constructed for the most mobile and, therefore, biologically available fractions. It has been shown that for the effective extraction of exchangeable/water-soluble forms of elements, 60 ml of eluent is required, and for acid-soluble forms - 120 ml. A high content of zinc, manganese, lead and cadmium is revealed occurring in an exchangeable/water-soluble form. The average amount of zinc in this fraction reaches 47.8%, manganese - 36.4%, lead - 25.8% of the total content. The average content of molybdenum in the exchangeable/water-soluble fraction is 8.7%. The content of mobile forms of elements exceeds the corresponding MPCs for soils several times: lead up to 5, nickel up to 9, copper up to 12, zinc up to 23. Consequently, these elements in the studied soils pose hazard to the environment.

Keywords: fractionation, microcolumns, elution curves, heavy metals, technogenically contaminated soils

 

REFERENCES

  1. Barabasheva, E.E., Stremetskaya, E.O. Rol' mikrobioty i organicheskogo veshchestva v protsessakh endogennogo i ekzogennogo rudoobrazovaniya [The role of microbiota and organic matter in endogenic and exogenic ore formation]. Vestnik ChitGU, 2010, no. 6 (63), pp. 83–89. (in Russian)
  2. Baskov, E.A., Belenitskaya, G.A., Romanovskii, S.I., et al. Litogeodinamika i minerageniya osadochnykh basseinov [Lithogeodynamics and menarogenetic specifics of sedimentary basins]. St. Petersburg, VSEGEI Publ., 1998, 480 p. (in Russian)
  3. Burachevskaya, M.V. Fraktsionnyi sostav soedinenii tyazhelykh metallov v chernozemakh obyknovennykh nizhnego Dona [Fraction composition of heavy metal compounds in ordinary chernozems of the lower Don area]. Cand. Sci. (Biol.) Dissertation, 2015, 214 p. (in Russian)
  4. Gigienicheskie normativy GN 2.1.7.2041–06. Predel`no dopustimye kontsentratsii (PDK) khimicheskikh veshchestv v pochve. 2.1.7. Pochva, ochistka naselennykh mest, otkhody proizvodstva i potrebleniya, sanitarnaya okhrana pochvy [Hygienic standards GN 2.1.7.2041–06. Maximal permissible concentrations (MPC) of chemicals in soils. 2.1.7. Soil, purification of settlements, industrial and domestic waste, sanitary protection of soil]. 16 p. (in Russian)
  5. Dampilova, B.V., Smirnova, O.K., Doroshkevich, S.V. Tyazhelye metally v zagryaznennykh pochvakh i khvostakh obogashcheniya rud sul'fidno-vol'framovykh mestorozhdenii Zabaykal'ya [Heavy metals in contaminated soils and dressing tailings of sulfide-tungsten ores in Western TransBaikalian deposit]. Materialy mezhdunarodnoi nauch.-prakt. konf. [Proc. International Sci. and Pract Conference]. Ulan-Ude, BNTs SO RAN, 2016, pp. 66–70. (in Russian)
  6. Dampilova, B.V., Fedotov, P.S., Dzhenloda, R.K., Fedunina, N.N., Karandashev, V.K. Sravnitel'noe izuchenie metodov otsenki podvizhnosti form elementov v zagryaznennykh pochvakh i tekhnogennykh peskakh v usloviyakh staticheskogo i dinamicheskogo ekstragirovaniya [Comparative study of methods soil for evaluating the mobility of element species in contaminated soil and technogenic sand under batch and dynamic extraction]. Zhurnal analiticheskoi khimii, 2017, vol. 72, no. 10, pp. 1113–1119. (in Russian)
  7. Doroshkevich, S.G., Smirnova, O.K., Shtareva, A.V. Otsenka zagryaznennosti territorii, dreniruemoi rudnichnymi vodami sul'fidno-vol'framovogo mestorozhdeniya (ZapadnoeZabaykal'e) [Assessment of contamination in the area drained by sulfide-tungsten ore water (Western TransBaikalia)]. Ekologiya i promyshlennost' Rossii, 2017, vol. 21, no. 6, pp.  54–57. (in Russian)
  8. Ladonin, D.V. Formy soedinenii tyazhelykh metallov v tekhnogenno-zagryaznyonnykh pochvakh [Forms of heavy-metal compounds in anthropogenically contaminated soils]. Extended abstract of Doctoral Sci. (Biol.) Dissertation. Moscow,  2016, 42 p. (in Russian)
  9. Savonina, E.Yu., Fedotov, P.S., Vennrikh, R. Pyatistadiinoe dinamicheskoe fraktsionirovanie form medi, tsinka i svintsa v pochvakh, ilakh i donnykh otlozheniyakh s primeneniem vrashchayushikhsya spiral'nykh kolonok [Five-step dynamic fractionation of copper, zinc, and lead species in soils, silts, and bottom sediments using rotating coiled columns].  Zhurnal analiticheskoi khimii, 2006, vol. 61, no. 7, pp. 702–708. (in Russian)
  10. Smirnova, O.K., Plyusnin, A.M. Dzhidinskii rudnyi raion (problemy sostoyaniya okruzhayushchei sredy) [Dzhidinskii ore district (problems in the environment state)]. Ulan-Ude, BNTs SO RAN, 2013, 181 p. (in Russian)
  11. Fedotov, P.S., Spivakov, B.Ya. Staticheskie i dinamicheskie metody fraktsionirovaniya form elementov v pochvakh, ilakh, i donnykh otlozheniyakh [Static and dynamic methods of fractioning element forms in soils, mud and bottom deposits]. Uspekhi khimii, 2008, vol. 77, no. 7, pp. 690–703. (in Russian)
  12. Fedotov, P.S., Savonina, E.Yu., Spivakov, B.Ya., Vennrikh, R. Vozmozhnosti garmonizatsii metodov dinamicheskogo fraktdsionirovaniya form elementov v pochvakh i donnykh otlozheniyakh [Possibilities for the harmonization of methods of the dynamic fractionation of elements in soils and bottom sediments]. Zhurnal analiticheskoi khimii, 2012, vol. 67, no. 10, pp. 851–861. (in Russian)
  13. Goldberg, E., Arrhenius, G. Chemistry of Pacific pelagic sediments. Geochimica et Cosmochimica Acta, 1958, vol. 13, pp. 153–212.
  14. Hirst, D., Nicholls, G. Techniques in sedimentary geochemistry. 1. Separation of the detrital and nondetrital fractions of limestones. Journal of Sedimentary Petrology, 1958, vol. 28, pp. 468–481.
  15. McLaren, R.G., Crawford, D.V. Studies on soil copper. I. The fractionation of copper in soils. Journal of Soil Science, 1973, vol. 24, no. 2, pp. 172–181.
  16. Santos, A., Santos, J. L., Aparicio, I., Alonso, E. Fractionation and distribution of metals in Guadiamar river sediments (SW Spain). Water Air Soil Pollution, 2010, vol. 207, no. 1–4, pp. 103–113.
  17. Sutherland, R.A. BCR®-701: a review of 10-years of sequential extraction analyses. Analytica Chimica Acta, 2010, vol. 680, pp. 10–20.
  18. Tessier, A., Campbell, P.G.C., Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical chemistry, 1979, vol. 51, no. 7, pp. 844–850.
  19. Whalley, C., Grant, A. Assessment of the phase selectivity of the European Community Bureau of Reference (BCR) sequential extraction procedure for metals in sediment. Analytica Chimica Acta, 1994, vol. 61, pp. 2211–2221.