ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Geoekologiya, 2022, Vol. 3, P. 57-68

THE STUDY OF THE FLOW HETEROGENITY OF THE CAMBRIAN BLUE CLAY IN SCOPE OF HAZARDOUS WASTE DISPOSAL    

M. V. Vilkina1*, A. M. Nikulenkov1, V. G. Rumynin1

1St. Petersburg Division, Sergeev Institute of Environmental Geoscience, Russian Academy of Sciences; Srednii pr., 41, St. Petersburg, 199004 Russia

*E-mail: wilkina.mari@hgepro.ru

 

The present article studies the flow heterogeneity in the Cambrian blue сlay in scope of hazardous toxic waste disposal at the Krasny Bor site. The clay properties were studied both in monoliths sampled in open-pit mine and bore cores by a number of laboratory methods. To investigate the flow characteristics of clays the in-situ Lugeon (or packer) tests were also performed. The visual analysis of the open-pit mine outcropping proved the Cambrian clays to have the block structure. The blocks are separated one from another by the orthogonal fracture system in subhorizontal and subvertical plane directions. The size of the blocks increases with depth, starting with centimeters and reaching several meters at a depth of 20 meters. Meanwhile, numerous borehole core examination during the engineering geological survey shows the absence of the fractures aperture, which could be a conductive zone. The laboratory method such as flow cells tests estimated the hydraulic conductivity of the clays to be 8.8∙10-7 and 9.0∙10-8 m/day in along and across bedding directions, respectively. The mean flow anisotropy value remains consistent across all samples and is 9.5. The results of the Lugeon tests allowed us to conclude about the closed state of the fracture system under natural conditions i.e., the clay massif acts as an aquitard. The water injection into an isolated interval with a pressure of four lithostatic values causes opening of the fracture system. In this case the hydraulic conductivity of the fracture system may reach up to 0.5 m/day. When an isolated with packers interval is decompressed, the fractures close in so the clays act as a flow barrier again. Therefore, depending on the environmental conditions the Cambrian blue clays may play the role of the flow hampering barrier or a conductive layer.

Keywords: Cambrian blue сlay, hydraulic conductivity, flow parameters, fracture system, Lugeon tests, waste disposal, Krasny Bor site

 

REFERENCES

  1. Briling, I.A. Fil'tratsiya v glinistykh porodakh [Filtration in clay deposits]. Moscow, VIEMS Publ., 1984, 61 p. (in Russian)

2. Gol'dberg, V.M., Skvortsov, N.P. Pronitsaemost' i fil'tratsiya v glinakh [Permeability and filtration in clays]. Moscow, Nedra Publ., 1986, 160 p. (in Russian)

3. Dashko, R.E., Eremeeva, A.A. Analiz i otsenka povysheniya bezopasnosti zakhoroneniya nizkoaktivnykh otkhodov v nizhnekembriiskikh sinikh glinakh zapadnoi chasti Leningradskoi oblasti [Analysis and estimation of promoting safe disposal of low-active waste in low Cambrian blue caly of the western part of Leningradskaya oblast]. Zapiski Gornogo instituta, 2004, vol. 154, pp. 131–135. (in Russian)

4. Dashko, R.E., Korobko, A.A. Geotekhnicheskie aspekty issledovanii nizhnekembriiskikh glin Sankt-Peterburga kak osnovaniya sooruzhenii [Geotechnical aspects of the study of low Cambrian clay in St.Petersburg as the basement of engineering structures]. Zhilishchnoe stroitel'stvo, 2014, no. 9, pp. 19–22. (in Russian)

5. Eremeeva, A.A. Inzhenerno-geologicheskaya i geoekologicheskaya otsenka uslovii zakhoroneniya promyshlennykh otkhodov v nizhnekembriiskikh glinakh Leningradskoi oblasti [Englineering geological and geoecological assessment of industrial waste disposal conditions in low Cambrian clay]. Cand. Sci. (Geol.-Min.) Diss., St. Petersburg, 2002, 212 p. (in Russian)

6. Korobko, A.A. Inzhenerno-geologicheskii analiz i otsenka uslovii stroitel'stva i ekspluatatsii sooruzhenii razlichnogo naznacheniya v predelakh Predglintovoi nizmennosti (Sankt-Peterburgskii region) [Engineering geological analysis and assessment of construction and operation conditions for engineering structures of different purpose within Predglintovaya depsression (St. Petersburg region). Extended abstract of Cand. Sci. (Geol.-Min.) Diss., St. Petersburg, 2015 (in Russian)

7. Lomtadze, V.D. Fiziko-mekhanicheskie svoistva nizhnekembriiskikh glin severo-zapadnoi okrainy Russkoi platform [Physico-mechanical properties of low Cambrian clay in the northwestern edge of the Russian platform]. Zapiski Gornogo instituta, 1958, vol. 34, pp. 154–188. (in Russian)

8. Rumynin, V.G., Nikulenkov, A.M. Zonal'nost' fizicheskikh svoistv kotlinskikh glin vendskoi sistemy (severo-zapad Russkoi platformy) [Zonality in physical properties of kotlin clay of Vendian system (the northwest of the Russian platform)]. Zapiski Gornogo instituta, 2012, vol. 197, pp. 191–196. (in Russian)

9. Rumynin, V.G. Opyt izucheniya glinistykh tolshch i kristallicheskikh massivov kak geologicheskikh sred dlya okonchatel'noi izolyatsii RAO [Experience in the study of clay and hard rock massifs as geological environment for final disposal of RW]. Radioaktivnye otkhody, 2017, no. 1, pp. 43-54 (in Russian)

10. Rumynin, V.G., Pankina, E.B., Yakushev, M.F. et al. Otsenka vliyaniya atomno-promyshlennogo kompleksa na podzemnye vody i smezhnye prirodnye ob’ekty [Assessment of impact of nuclear power industry on groundwater and adjacent natural bodies]. St. Petersburg, SPbGU Publ., 2002, 246 p. (in Russian)

11. Terzaghi, K., Pek, R. Mekhanika gruntov v inzhenernoi praktike [Soil and rock mechanics in engineering practice]. Moscow, Gosudarstvennoe izdatel'stvo literatury po stroitel'stvu, arkhitekture i stroitel'nym materialam, 1958, 607 p. (in Russian)

12. Arnould, M. Discontinuity networks in mudstones: a geological approach. Implications for radioactive wastes isolation in deep geological formation in Belgium, France, Switzerland. Bull. of Eng. Geol. and the Envir., 2006, vol. 65, pp. 413–422.

13. Bock, H., Blümling, P., Konietzky, H. Study of the micro-mechanical behaviour of the Opalinus Clay: an example of co-operation across the ground engineering disciplines. Bull. of Engin. Geol. and the Envir., 2006, vol. 65, pp. 195–207.

14. Blumling, P., Bernier, F., Lebon, P., Derek Martin C. The excavation damaged zone in clay formations time-dependent behavior and influence on performance assessment, 2006. DOI: 10.1016/j.pce.2006.04.034

15. Houlsby, A.C. Routine interpretation of the Lugeon water-test. Quarterly Journal of Engineering Geology, 1976, no. 9(4), pp. 303–313. DOI: 10.1144/GSL.QJEG.1976.009.04.03

16. Huysmans, M., Dassargues, A. Stochastic analysis of the effect of spatial variability of diffusion parameters on radionuclide transport in a low permeability clay layer. Hydrogeol. Journ., 2006, vol. 14, pp. 1094–1106.

17. Lugeon, M. Barrages et géologie. Bulletin Technique de La Suisse Romande, 1932, vol. 58, no. 19-20, pp. 225-240.

18. Moye, D.G. Diamond drilling for foundation exploration. Civil Engineering Transactions, Institution of Engineers of Australia. 1967, pp. 95-100.