ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Geoekologiya, 2019, Vol. 6, P. 79-93

ASSESSMENT OF ANTHROPOGENIC CONTAMINATION IN AN URBANTERRITORY BY THE EXAMPLE OF BLAGOVESHCHENSK CITY

© 2019 V. I. Radomskaya¹·*, N. A. Borodina¹·**
¹
Institute of Geology and Nature Management, Far Eastern Branch, Russian Academy of Sciences,
Relochnyi per. 1, Blagoveshchensk, 675000 Russia
*E-mail: radomskaya@ascnet.ru,
**E-mail:
borodina53@yandex.ru

The distribution of heavy metals (HM) was analyzed in soils of Blagoveshchensk. The main physicochemical features (pH, the content of organic substance, mobile forms of phosphorus and potassium, the exchangeable cations of calcium and magnesium, as well as the total content of Cu, Cr, Ni, Co, Pb, Mn, Cd, Zn) were studied in soil samples. The anthropogenic influence on the urban environment transforms the physicochemical properties of soils: alkalizes the soil cover, increases the organic matter content, exchangeable bases, and mobile forms of biogenic elements. The total content of studied HM in the soils of Blagoveshchensk exceeds their concentrations in soils of the Mukhinka background territory and shows the spatial heterogeneity of pollutants’ distribution in the upper soil layer. As proceeds from the comparison of the studied elements’ concentrations with their MPC/APC, the most polluted territories are confined to industrial zones. Four elements, i.e., Mn, Pb, Cd and Zn, are accumulated in urban soils. However, Cu, Ni, Co, Cr accumulation is not so important. The calculation results of total contamination index in the upper soil cover layer in Blagoveshchensk taking into account the HM toxicity coefficient prove that Blagoveshchensk soils are mainly classified as moderately hazardous and nonhazardous. The evidence on the total content of HM do not allow making conclusion about their geochemical behavior in soils and about possible transition to neighbor environment. That is why the most  mobile and easily mobilized forms of heavy metals, i.e., water-soluble and specifically adsorbed forms, were extracted using the method of successive extractions. The mobility of metals was established to be higher in the urban soils as compared to the background soils. Among the studied elements, Cd, Pb and Zn proved to be the most hazardous, with their mobility being close to the average risk of being included in the nutrition chains. This may lead to the contamination of Amur cross-boundary river ecosystems with heavy metals in case the groundwater level rises in the Blagoveshchensk territory due to its waterlogging by the Zeya River water.

Keywords: urban territory, heavy metals, total soil contamination, concentration coefficient, mobile forms.

DOI: https://doi.org/10.31857/S0869-78092019679-93

REFERENCES

1. Vodyanitskii, Yu.N. Metody posledovatel’noi ekstraktsii tyazhelykh metallov iz pochv - novye podkhody i mineralogicheskii kontrol’ (analiticheskii obzor) [Methods of sequential extraction of heavy metals from soils: new approaches and the mineralogical control (a review)]. Pochvovedenie, 2006, no. 10, pp. 1190-1199. (in Russian)

2. Vodyanitskii, Yu.N. Tyazhelye i sverkhtyazhelye metally i metalloidy v zagryaznennykh pochvakh [Heavy and super heavy metals and metalloids in polluted soils]. Moscow, Dokuchaev Soil Science, 2009, 184 p. (in Russian)

 3. Vodyanitskii, Yu.N. Formuly otsenki summarnogo zagryazneniya pochv tyazhelymi metallami i metalloidami [Equations for assessing the total contamination of soils with heavy metals and metalloids]. Pochvovedenie, 2010, no. 10, pp. 1276-1280. (in Russian).

 4. Borodina, N.A. Tekhnogennoe zagryaznenie tyazhelymi metallami urbanizirovannykh pochv Amurskoi oblasti [Technogenic pollution of urbanized soils of the Amur region by heavy metals]. Vestnik Dal’nevostochnogo otdeleniya Rossiiskoi akademii nauk, 2018, no. 2, pp. 43-49. (in Russian).

5. Grigor’ev, N.A. Raspredelenie khimicheskikh elementov v verkhnei chasti kontinental’noi kory [The distribution of chemical elements in the upper part of continental crust], Yekaterinburg, Ural Branch of RAS, 2009, 382 p. (in Russian)

6. Kasimov, N.S., Kosheleva, N.E., Sorokina, O.I., Bazha, S.N., Gunin, P.D., Enh-Amgalan, S. Ekologo- geokhimicheskoe sostoyanie pochv g. Ulan-Bator (Mongoliya) [Ecological and geochemical state of soils in Ulaan-Baatar (Mongolia)]. Pochvovedenie, 2011, no. 7, pp. 771-784. (in Russian).

7. Kondrat’ev, I.I. Atmosfernyi transgranichnyi perenos zagryaznyayushchikh veshchestv iz tsentrov emissii vostochnoi Azii na yug Dal’nevostochnogo regiona Rossii [Atmospheric transboundary transfer of pollutants from the East Asia emission centers to the southern Far-Eastern region of Russia]. Vestnik Dal’nevostochnogo otdeleniya Rossiiskoi akademii nauk, 2008, no.1, pp. 107-112. (in Russian).

8. Kosheleva, N.E., Kasimov, N.S., Vlasov, D.V. Faktory nakopleniya tyazhelykh metallov i metalloidov na geokhimicheskikh bar’erakh v gorodskikh pochvakh [Factors of the accumulation of heavy metals and metalloids at geochemical barriers in urban soils]. Pochvovedenie, 2015, no. 5, pp. 536-553. (in Russian).

9. Kosheleva, N.E., Dorokhova, M.F., Kuz’minskaya, N.Yu., Ryzhov, A.V., Kasimov, N.S. Vliyanie avtotransporta na ekologicheskoe sostoyanie pochv v Zapadnom administrativnom okruge Moskvy [Impact of motor vehicles on the ecological state of soils in the western district of Moscow]. Vestnik Moskovskogo universiteta. Seriya 5: Geografiya, 2018, no 2, pp. 16- 27. (in Russian).

10. Kurganova, O.P., Yavkina, E.N., Sitnikova, G.V. Obzor gidrologicheskikh osobennostei navodnenii v Amurskoi oblasti dlya vyrabotki kompleksa sanitarno- protivoepidemicheskikh meropriyatii po minimizatsii sotsial’nykh posledstvii [Review of hydrological peculiarities of floods in the Amur region with the purpose to establish a set of sanitary measures for minimization of social consequences]. Problemy osobo opasnykh infektsii, 2014, no. 1, pp. 29-32. (in Russian).

11. Ladonin, D.V. Soedineniya tyazhelykh metallov v pochvakh – problemy i metody izucheniya [Heavy metal compounds in soils: problems and methods of study]. Pochvovedenie, 2002, no. 6, pp. 682-692. (in Russian).

12. Ladonin, D.V. Elementy platinovoi gruppy v pochvakh i ulichnoi pyli Yugo-Vostochnogo administrativnogo okruga g. Moskvy [Platinum-group elements in soils and street dust of the South-eastern administrative district of Moscow]. Pochvovedenie, 2018, no. 3, pp. 274-283. (in Russian).

13. Nikiforova, E.M., Kasimov, N.S., Kosheleva, N.E. Mnogoletnyaya dinamika antropogennoi solontsevatosti pochv VAO Moskvy pri ispol’zovanii protivogololednykh reagentov [Long-term dynamics of anthropogenic solonetzicity in soils of the Eastern okrug of Moscow under the impact of deicing salts]. Pochvovedenie, 2017, no. 1, pp. 93-104. (in Russian).

14. Pavlova, L.M., Radomskaya, V.I., Yusupov, D.V. Vysokotoksichnye elementy v snezhnom pokrove na territorii g. Blagoveshchenska [High-toxic elements in snow cover in the Blagoveshchensk territory]. Geoekologiya, 2015, no. 1, pp. 27-35. (in Russian).

15. Pavlova, L.M., Radomskaya, V.I., Yusupov, D.V. Vysokotoksichnye elementy v pochvennom pokrove na territorii g. Blagoveshchensk [High-toxic elements in the soil cover in the territory of town of Blagoveshchensk]. Ekologiya i promyshlennost’ Rossii, 2015, no. 5, pp. 50-55. (in Russian).

16. Plyaskina, O.V., Ladonin, D.V. Zagryaznenie gorodskikh pochv tyazhelymi metallami [Heavy metal pollution of urban soils]. Pochvovedenie, 2009, no. 7, pp. 877-885. (in Russian).

17. Pochva, gorod, ekologiya [Soil, city, ecology]. Dobrovol’skii, G.V., Ed., Moscow, Economic Literacy Foundation Publ., 1997. 310 p.

18. Radomskaya, V.I., Yusupov, D.V., Pavlova, L.M. Redkozemel’nye elementy v atmosfernykh osadkakh na territorii g. Blagoveshchenska [Rare-earth elements in the atmospheric precipitation of the Blagoveshchensk city]. Geokhimiya, 2018, no. 2, pp. 197-206. (in Russian).

19. Saet, Yu.E., Revich, B.A., Yanin, E.P., Smirnova, R.S., Basharkevich, I.L., Onishchenko, T.L., Pavlova, L.N., Trefilova, N.Ya., Achkasov, A.I., Sarkisyan, S.Sh. Geokhimiya okruzhayushchei sredy [Environmental geochemistry]. Moscow, Nedra, 1990. 335 p. (in Russian).

20. Yusupov, D.V., Radomskaya, V.I., Pavlova, L.M., Trutneva, N.V., Il’enok, S.S. Tyazhelye metally v pylevom aerozole Severo-zapadnoi promyshlennoi zony g. Blagoveshchensk (Amurskaya oblast’) [Heavy metals in dust aerosols of the northwest industrial area of Blagoveshchensk (Amur region)]. Optika atmosfery i okeana, 2014, no. 10, pp. 906-910. (in Russian).

21. Shumilova, L.P. Otsenka tekhnogennogo zagryazneniya pochv Blagoveshchenska [Assessing technogenic pollution of soils in Blagoveshchensk]. Geografiya i prirodnye resursy, 2016, no. 2, pp. 36-45. (in Russian).

22. Ajmone-Marsan, F., Biasioli, M. Trace Elements in Soils of Urban Areas. Water Air Soil Pollut., 2010, no. 213, pp. 121–143.

23. Barnes, R.M. Childhood soil ingestion: How much dirt do kids eat? Anal. Chem., 1990, vol. 62, no. 19, pp. 1023A-1033A.

24. Bellinger, D., Leviton, A., Slowman, J. Antecedents and correlates of improved cognitive performance in children exposed in utero to low levels of lead. Environmental Health Perspectives, 1990, vol. 89, pp. 5-11.

25. Brubaker, C.J., Elgovan, I.R., Lanphear, B.P., Adler, C.M., Dietrich, K.N., Cecil, K.M. Childhood lead exposure decreases adult gray matter volume. Neurotoxicology and Teratology. 2007, vol. 29, no. 3, pp. 398.

26. Clausing, P., Brunekreef, B., van Wijnen, J.H. A method for estimating soil ingestion by children. International Archives of Occupational and Environmental Health, 1987, vol. 59, no. 1, pp. 73–82.

27. Ghrefat, H.A., Yusuf, N., Jamarh, A., Nazzal, J. Fractionation and risk assessment of heavy metals in soil samples collected along Zerqa River, Jordan. Environmental Earth Sciences, 2012, vol. 66, pp. 199-208.

28. Guo, P., Xie, Z., Li, J., Kang, C., Liu, J. Relationships between fractionations of Pb, Cd, Cu, Zn and Ni and soil properties in urban soils of Changchun, China. Chinese Geographical Science, 2005, vol. 15, no. 2, pp. 179-185.

29. Hu, Z., Gao, S. Upper crustal abundances of trace elements: A revision and update. Chemical Geology, 2008, vol. 253, no. 3-4, pp. 205-221.

30. Linde, M, Bengtsson, H, Oborn, I. Concentrations and pools of heavy metals in urban soils in Stockholm, Sweden. Water, Air, Soil Pollut (Focus), 2001, no. 1, pp. 83–101.

31. Linde, M., Oborn, I., Gustafsson, J.P. Effects of Changed Soil Conditions on the Mobility of Trace Metals in Moderately Contaminated Urban Soils. Water, Air, Soil Pollut., 2007, vol. 183, pp. 69–83.

32. Mielke, H.W., Gonzales, C.R., Smith, M.K., Mielke, P.W. The urban environment and children’s health: soils as an integrator of lead, zinc and cadmium in New Orleans, Louisiana U.S.A. Environmental Research, 1999, vol.81, no. 2, pp. 117-129.

33. Miguel, E. de, Llamas, J.F., Chacon, E., Berg, T., Larssen, S., Royset, O., Vadset, M. Origin and patterns of distribution of trace elements in street dust: un- leaded petrol and urban lead. Atmospheric Environment, 1997, vol. 31, no. 17, pp. 2733-2740.

34. Morin, G., Ostergren, J.D., Juillot, F., Ildefonse, P., Calas, G., Brown, J.E. XAFS determination of the chemical form of lead in smelter contaminated soils and mine tailings: Importance of adsorption process. American Mineralogist, 1999, vol. 84, pp. 420-434.

35. Pichtel, J., Sawyerr, H.T., Czarnowska, K. Spatial and temporal distribution of metals in soils in Warsaw, Poland. Environ Pollut., 1997, vol. 98, pp. 169–174.

36. Rudnick, R.L., Gao, S. Composition of the continental crust. Treatise on geochemistry, Vol. 3. Elsevier Science, 2003. 659 p.

37. Singh, K.P., Mohan, D., Singh, V.K., Malik, A. Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India. Journal of Hydrology, 2005, vol. 312, no. 1-4, pp. 14–27.

38. Thuy, H.T.T., Tobschall, H.J., An, P.V. Distribution of heavy metals in urban soils-a case study of Danany- Hoian Area (Vietnam). Environ Geol., 2000, vol. 39, pp. 603–610.