ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Geoekologiya, 2021, Vol. 6, P. 3-16

THE ROLE OF MICROBIOLOGICAL PROCESSES IN THE FORMATION OF GEOCHEMICAL BARRIERS AND REDOX ZONES РОЛЬ UPON POLLUTION OF SOILS AND AQUIFERS WITH METALS NEAR MSW DISPOSAL SITES  

V. S. Putilina*, T. I. Yuganova**

Sergeev Institute of Environmental Geoscience RAS,

Ulanskii per., 13, str. 2, Moscow, 101000 Russia

*E-mail: vputilina@yandex.ru,
**E-mail: tigryu@gmail.com

 

The article analyzes the role of microbiological processes in the formation of geochemical barriers and redox zones in the contamination of soils, rocks and groundwater with metals. A significant contribution to environmental pollution is made by heavy metals in waste storage sites, their migration with the forming filtrate to the aeration zone and underground water. Special attention is paid to the characteristics of the behavior of heavy metals in changing redox conditions, their transformation and entry into groundwater. The mechanisms of biological transformation of metals in order to reduce their toxic impact on the environment are considered. It is noted that the biological detoxification of the natural environment is a combination of the processes of metabolism and bioconcentrating due to complex formation, sorption and biodegradation of the substance, depending on the biological activity of the environment and the nature of pollutants. The bioremediation of contaminated territories and aquifers is one of the safest, cost-effective, environmentally friendly technologies for the disinfection of contaminated areas of territories and aquifers.

Keywords: microbiological processes, geochemical barriers, redox zones, pollution, soils, groundwater, metals

REFERENCES

  1. Galitskaya, I.V., Putilina, V.S., Yuganova, T.I. Rol’ organicheskogo veshchestva v migratsii tyazhelykh metallov na uchastkakh skladirovaniya tverdykh bytovykh otkhodov [The role of organic matter in heavy metal migration at the storage sites of municipal solid wastes]. Geoekologiya, 2005, no. 5, pp. 411–422. (in Russian)
  2. Galitskaya, I.V., Putilina, V.S., Yuganova, T.I. Fromirovanie zonal’nosti okislitel’no-vosstanovitel’nykh sostoyanii v vodonosnykh gorizontakh pod vliyaniem poligonov i svalok TBO [Formation of redox state zonality in aquifers affected by MSW storage sites and dumps]// Geoekologiya, 2008, no. 5, pp. 401–410. (in Russian)
  3. Galitskaya, I.V., Putilina, V.S., Yuganova, T.I. Rol’ mikroorganizmov v povedenii urana v sisteme voda-poroda [The role of microorganisms in uranium behavior in the water-rock system]. Geoekologiya, 2016, no. 4, pp. 320–334. (in Russian)
  4. Krainov, S.R., Ryzhenko,B.N., Shvets, V.M. Geokhimiya podzemnykh vod. Teoreticheskie, prikladnye i ekologicheskie aspekty [Groundwater geochemistry. Theoretical, applied, and environmental aspects]. Moscow, Nauka Publ., 2004, 677 p. (in Russian)
  5. Nikovskaya, G.N., Ul’berg,Z.P., Koval’, L.A. Kolloidno-khimicheskie protsessy v biotekhnologii izvlecheniya tyazhelykh metallov iz pochvy [Colloidal chemical processes in biotechnology of extracting heavy metals from soils]. Kolloidnyi zhurnal, 2001, vol. 63, no. 6, pp.  820–824. (in Russian)
  6. Ogurtsova, L.V., Karavaiko, G.I., Avakyan, Z.A., Korneevskii A.A. Aktivnost’ razlichnykh mikroorganizmov v vynose elementov iz boksita [Activity of different microorganisms in withdrawal of elements from bauxite] Mikrobiologiya, 1989, vol. 58, no. 6, pp. 956–962. (in Russian)
  7. Putilina, V.S., Galitskaya, I.V., Yuganova, T.I. Vliyanie organicheskogo veshchestava na migratsiyu tyazhelykh metallov na uchastkakh skladirovaniya tverdykh bytovykh otkhodov: Analit. Obzor. Ser. Ekologiya; vyp. 76 [Influence of organic matter on migration of heavy metals at the disposal sites of municipal solid waste: Analytic review. Ecology series. Issue 76]. Novosibirsk: GPNTB SO RAN, 2005, 100 p. (in Russian) 
  8. Abiriga, D., Jenkins, A., Alfsnes, K., Vestgarden, L.S., Klempe, H. Characterisation of the bacterial microbiota of a landfill-contaminated confined aquifer undergoing intrinsic remediation. Science of the Total Environment, 2021, vol. 785, paper 147349, 12 p.
  9. Anderson, R.T., Vrionis, H.A., Ortiz-Bernad, I., Resch, C.T., Long, P.E., Dayvault, R., Karp, K., Marutzky, S., Metzler, D.R., Peacock, A., White, D.C., Lowe, M., Lovley, D.R. Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Applied & Environmental Microbiology, 2003, vol. 69, no. 10, pp. 5884–5891.
  10. Burkhardt, E.-M., Meißner, S., Merten, D., Büchel, G., Küsel, K. Heavy metal retention and microbial activities in geochemical barriers formed in glacial sediments subjacent to a former uranium mining leaching heap. Chemie der Erde – Geochemistry, 2009, vol. 69, suppl. 2, pp. 21–34.
  11. Calmano, W., Hong, J., Förstner, U. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Science & Technology, 1993, vol. 28, no. 8–9, pp. 223–235.
  12. Edwards, L., Kusel, K., Drake, H., Kostka, J.E. Electron flow in acidic subsurface sediments contaminated with nitrate and uranium. Geochimica et Cosmochimica Acta, 2007, vol. 71, no. 3, pp. 643–654.
  13. Flyhammar, P. Estimation of heavy metal transformations in municipal solid waste. The Science of the Total Environment, 1997, vol. 198, no. 2, pp. 123–133.
  14. Gadd, G.M., Griffiths, A.J. Microorganisms and heavy metal toxicity. Microbial Ecology, 1978, vol. 4, no. 4, pp. 303–317.
  15. Hansel, C.M., Benner, S.G., Neiss, J., Dohnalkova, A., Kukkadapu, R.K., Fendorf, S. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochimica et Cosmochimica Acta, 2003, vol. 67, no.16, pp. 2977–2992.
  16. Hyldegaard, B.H., Jakobsen, R., Weeth, E.B., Overheu, N.D., Gent, D.B., Ottosen, L.M. Challenges in electrochemical remediation of chlorinated solvents in natural groundwater aquifer settings. Journal of Hazardous Materials, 2019, vol. 368, pp. 680–688.
  17. Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baun, A., Ledin, A., Christensen, T.H. Present and long-term composition of MSW landfill leachate: A Review.  Critical Reviews in Environmental Science & Technology, 2002, vol. 32, no. 4, pp. 297–336.
  18. Knox, A.S., Brigmon, R.L., Kaplan, D.I., Paller, M.H. Interactions among phosphate amendments, microbes and uranium mobility in contaminated sediments. The Science of the Total Environment, 2008, vol. 395, no. 2–3, pp. 63–71.
  19. Kulshreshtha, A., Agrawal, R., Barar, M., Saxena, S. A review on bioremediation of heavy metals in contaminated water. IOSR Journal of Environmental Science, Toxicology & Food Technology, 2014, vol. 8, no. 7, pp. 44–50.
  20. Lin, B., Braster, M., Röling, W.F., van Breukelen, B.M. Iron-reducing microorganisms in a landfill leachate-polluted aquifer: complementing culture-independent information with enrichments and isolations. Geomicrobiology Journal, 2007, vol. 24, no. 3–4, pp. 283–294.
  21. Lloyd, J.R., Lovley, D.R. Microbial detoxification of metals and radionuclides.  Current Opinion in Biotechnology, 2001, vol. 12, no. 3, pp. 248–253.
  22. Lloyd, J.R., Lovley, D.R., Macaskie, L.E. Biotechnological application of metal-reducing microorganisms. Advances in Applied Microbiology, 2003, vol. 53, pp. 85–128.
  23. Logeshwaran, P., Megharaj, M., Chadalavada, S., Bowman, M., Naidu, R. Petroleum hydrocarbons (PH) in groundwater aquifers: an overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches. Environmental Technology & Innovation, 2018, vol. 10, pp. 175–193.
  24. Lovley, D.R. Anaerobes into heavy metal: Dissimilatory metal reduction in anoxic environments. Trends in Ecology & Evolution, 1993, vol. 8, no. 6, pp. 213–217.
  25. Lovley, D.R. Bioremediation of organic and metal contaminants with dissimilatory metal reduction. Journal of Industrial Microbiology, 1995, vol. 14, pp. 85–93.
  26. Lovley, D.R., Fraga, J.L., Blunt-Harris, E.L., Hayes, L.A., Phillips, E.J.P., Coates, J.D. Humic substances as a mediator for microbially catalysed metal reduction. Acta Hydrochimica et Hydrobiologica, 1998, vol. 26, no. 3, pp. 152–157.
  27. Lovley, D.R., Anderson, R.T. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface. Hydrogeology Journal, 2000, vol. 8, no. 1, pp. 77–88.
  28. Lovley, D.R. Anaerobes to the rescue. Science, 2001, vol. 293, no. 5534, pp. 1444–1446.
  29. Lovley, D.R. Dissimilatory metal reduction: From early life to bioremediation. ASM News, 2002, vol. 68, pp. 231–237.
  30. Lovley, D.R. Extracellular electron transfer: wires, capacitors, iron lungs, and more. Geobiology, 2008, vol. 6, no. 3, pp. 225–231.
  31. Lyngkilde, J., Christensen, T.H. Redox zones of a landfill leachate pollution plume (Vejen, Denmark). Journal of Contaminant Hydrology, 1992, vol. 10, pp. 273–289.
  32. O’Connor, D., Hou, D., Ok, Y.S., Song, Y., Sarmah, A.K., Li, X., Tack, F.M. Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: a review. Journal of Controlled Release, 2018, vol. 283, pp. 200–213.
  33. Picardal, F., Cooper, D.G. Microbially mediated changes in the mobility of contaminant metals in soils and sediments // Ahmad I., Hayat S., Pichtel J. (Eds.), Heavy Metal Contamination of Soil: Problems and Remedies. Enfield, NH: Science Publishers, Inc., 2005, pp. 43–88.
  34. Sitte, J., Akob, D.M., Kaufmann, C., Finster, K., Banerjee, D., et al. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil. Applied & Environmental Microbiology, 2010, vol. 76, no.10, pp. 3143–3152.
  35. Stewart, B.D., Neiss, J., Fendorf, S. Quantifying constraints imposed by calcium and iron on bacterial reduction of Uranium(VI). Journal of Environmental Quality, 2007, vol. 36, no. 2, pp. 363–372.
  36. Tarekegn, M.M., Salilih, F.Z., Ishetu, A.I. Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food & Agriculture, 2020, vol. 6, no. 1, paper 1783174, 19 p.
  37. Vodyanitskii,Yu N. Biochemical processes in soil and groundwater contaminated by leachates from municipal landfills (Mini review). Annals of Agrarian Science, 2016, vol. 14, no. 3, pp. 249–256.