ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Geoekologiya, 2021, Vol. 1, P. 3-13

AMMONIUM NITROGEN IN THE LEACHATE OF MSW LANDFILLS: FORMATION, TRANSFORMATION, AND LONG-TERM POLLUTION

I. V. Galitskaya1,*, V. S. Putilina1,**, and T. I. Yuganova1,***

1 Sergeev Institute of Environmental Geoscience, Russian Academy of Sciences, Ulanskii per., 13, str. 2, Moscow, 101000 Russia
*E-mail: galgeoenv@mail.ru
**E-mail: vputilina@yandex.ru
***E-mail: tigryu@gmail.com

The paper deals with the study of issues related to the duration of ammonium nitrogen release from the municipal solid waste to the landfill filtrate, the forms of nitrogen in the filtrate, the processes of ammonium ionsorption and transformation in the landfill body, carried out on the basis of analysis of Russian and foreign publications. The mechanisms of reversible and irreversible sorption of ammonium ion have been considered, and the values of its distribution coefficients for various rocks are given. The processes of ammonium ion transformation under aerobic and anaerobic conditions are analyzed, including the recently established process of anaerobic microbial reaction of NH4+ nitrite oxidation, called “anammox”, which plays an important role in the biological nitrogen cycle. The processes of formation and transformation of NH4+ in the landfills are clearly traced on the example of waste disposal in aerobic and anaerobic landfills bioreactors.

Key words: MSW landfill, leachate, ammonium, nitrate, nitrite, groundwater pollution, landfill-biorector, long-term emissions

 

REFERENCES

 

  1. Assmuth, T.W., Strandberg T. Ground-water contamination at Finnish landfills, Water, Air & Soil Pollution, 1993, vol. 69, no. 1–2, pp. 179-199.
  2. Barlaz, M.A., Rooker, A.P., Kjeldsen, P., Gabr, M.A., Borden, R.C. Critical evaluation of factors required to terminate the postclosure monitoring period at solid waste landfills, Environmental Science & Technology, 2002, vol. 36, no. 16, pp. 3457-3464.
  3. Berge, N.D., Reinhart, D.R., Townsend, T.G. The fate of nitrogen in bioreactor landfills, Critical Reviews in Environmental Science & Technology, 2005, vol. 35, no. 4, pp. 365-399.
  4. Berge, N.D., Reinhart, D.R., Dietz, J., Townsend, T. In situ ammonia removal in bioreactor landfill leachate, Waste Management, 2006, vol. 26, no. 4, pp. 334-343.
  5. Bjerg, P.L., Rügge, K., Pedersen, J.K., Christensen, T.H. Distribution of redox-sensitive groundwater quality parameters downgradient of a landfill (Grindsted, Denmark), Environmental Science & Technology, 1995, vol. 29, pp. 1387-1394.
  6. Brady, N.C., Weil, R.R. The Nature and Properties of Soils: 13th edition, NJ, USA: Prentice-Hall, Englewood Cliffs, 2002, 960 p., ISBN: 978-0130167637.
  7. Buss, S.R., Herbert, A.W., Morgan, P., Thornton, S.F., Smith, J.W.N. A review of ammonium attenuation in soil and groundwater, Quarterly Journal of Engineering Geology & Hydrogeology, 2004, vol. 37, no. 4, pp. 347-359.
  8. Christensen, T.H., Bjerg, P.L., Kjeldsen, P. Natural attenuation: a feasible approach to remediation of groundwater pollution at landfills? Ground Water Monitoring & Remediation, 2000, vol. 20, no. 1, pp. 69–77.
  9. Christensen, T.H., Kjeldsen, P., Bjerg, P.L., Jensen, D.L., et all. Biogeochemistry of landfill leachate plumes, Applied Geochemistry, 2001, vol. 16, no. 7–8, pp. 659–718.
  10. Cozzarelli, I.M., Böhlke, J.K., Masone,r J., Breit, G.N., et all. Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma, Ground Water, 2011, vol. 49, no. 5, pp. 663–687.
  11. DeSimone, L.A., Barlow, P.M., Howes, B.L. A Nitrogen-rich Septage-effluent Plume in a Glacial Aquifer, Cape Cod, Massachusetts, February 1990 through December 1992, 96 p, (US Geological Survey Water Supply Paper; 2456). https://pubs.usgs.gov/wsp/2456/report.pdf.
  12. Ehrig, H.-J. Water and element balances of Landfills // The Landfill / Baccini P., ed., Berlin, Germany: Springer Verlag, 1989, pp. 83–115, (Lecture Notes in Earth Sciences, vol. 20).
  13. Erskine, A.D. Transport of ammonium in aquifers: retardation and degradation, Quarterly Journal of Engineering Geology & Hydrogeology, 2000, vol. 33, no. 2, pp. 161-170.
  14. Galitskaya, I.V., Putilina, V.S., Yuganova, T.I. Prodolzhitel`nost` vy`shhelachivaniya metallov iz svalochnogo tela pri zaxoronenii tverdy`x kommunal`ny`x otxodov [Duration of leaching of heavy metals from the landfill body at the municipal solid waste disposal] Geoekologiya, 2020, no. 6, pp. 3-13. (in Russian)
  15. Horan, N.J. Biological Wastewater Treatment Systems, Theory and Operation. Chichester, England, NY, USA: John Wiley & Sons, 1990, 310 p., ISBN: 0471922587, 0471924253.
  16. Hydrogeological Risk Assessments for Landfills and the Derivation of Groundwater Control and Trigger Levels: Landfill Directive Project LFTGN01, Bristol, UK: Environment Agency, 2003. http://adlib.everysite.co.uk/resources/000/064/494/Hydrogeological_Risk.pdf.
  17. Jiang, J.G., Yang, G.D., Deng, Z., Huang, Y.F., Huang, Z.L. et all. Pilot-scale experiment on anaerobic bioreactor landfills in China, Waste Management, 2007, vol. 27, no. 7, pp. 893-901.
  18. Kjeldsen, P., Christophersen, M. Composition of leachate from old landfills in Denmark, Waste Management & Research, 2001, vol. 19, no. 3, pp. 249-256.
  19. Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baun, A., et all. Present and long-term composition of MSW landfill leachate: A Review, Critical Reviews in Environmental Science & Technology, 2002, vol. 32, no. 4, pp. 297-336.
  20. Kruempelbeck, I., Ehrig, H.-J. Long-term behavior of municipal solid waste landfills in Germany, Sardinia 99, Seventh International Waste Management and Landfill Symposium, 48 October, S. Margherita di Pula, Cagliari, Proceedings vol. I / Christensen T. H., Cossu R., Stegmann R., eds., CISA - Environmental Sanitary Engineering Centre, Cagliari, Italy 1999, pp. 27-36. (from [19])
  21. Long, Y., Guo, Q.-W., Fang, C.-R., Zhu, Y.-M., Shen, D.-S. In situ nitrogen removal in phase-separate bioreactor landfill, Bioresource Technology, 2008, vol. 99, no. 13, pp. 5352-5361.
  22. Pichler, M., Kogner-Knabner, I. Chemolytic analysis of organic matter during aerobic and anaerobic treatment of municipal solid waste, Journal of Environmental Quality, 2000, vol. 29, no. 4, pp. 1337-1344.
  23. Price, G.A., Barlaz, M.A., Hater, G.R. Nitrogen management in bioreactor landfills, Waste Management, 2003, vol. 23, no. 7, pp. 675-688.
  24. Read, A.D., Hudgins, M., Philips, P. Perpetual landfilling through aeration of the waste mass; lessons from test cells in Georgia (USA), Waste Management, 2001, vol. 21, no. 7, pp. 617-629.
  25. Reinhart, D.R., Al-Yousfi, A.B. The impact of leachate recirculation on municipal solid waste landfill operating characteristics, Waste Management & Research, 1996, vol. 14, no. 4, pp. 337-346.
  26. Reinhart, D.R., McCreanor, P.T., Townsend, T.G. The bioreactor: its status and future, Waste Management & Research, 2002, vol. 20, no. 2, pp. 172-186.
  27. Ritzkowski, M., Heyer, K.-U., Stegmann, R. Fundamental processes and implications during in situ aeration of old landfills, Waste Management, 2006, vol. 26, no. 4, pp. 356-372.
  28. Robinson, H.D. The Technical Aspects of Controlled Waste Management. A Review of the Composition of Leachates from Domestic Wastes in Landfill Sites: Report for the UK Department of the Environment. Waste Science and Research / Aspinwall & Company, Ltd, London, UK, 1995. (from [19])
  29. Sliusar, N., Vaisman, Y., Korotaev, V. Ocenka dolgosrochnyx emissij ob`ektov zahoroneniya tverdyx kommunalnyx otxodov: rezultaty polevyx issledovanij i laboratornogo modelirovaniya [The estimation of long-term emissions from municipal solid waste landfill-sites: the results of field studies and Laboratory Modeling]. Ekologiya i promyshlennost' Rossii, 2016, vol. 20, no. 4, pp. 32-39. (in Russian)
  30. Thamdrup, B., Dalsgaard, T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments, Applied & Environmental Microbiology, 2002, vol. 68, no. 3, pp. 1312-1318.
  31. Townsend, T.G., Miller, W., Lee, H., Earle, J. Acceleration of landfill stabilization using leachate recycle, Journal of Environmental Engineering, 1996, vol. 122, no. 4, pp. 263-268.
  32. Vodyanitskii, Yu N. Biochemical processes in soil and groundwater contaminated by leachates from municipal landfills (Mini review), Annals of Agrarian Science, 2016, vol. 14, no. 3, pp. 249-256.
  33. Wang, Q., Matsufuji, Y., Dong, L., Huang, Q.F. et all. Research on leachate recirculation from different types of landfills, Waste Management, 2006, vol. 26, no. 8, pp. 815-824.
  34. Zavizion, Yu.V., Slyusar, N.N., Glushankova, I.S., Zagorskaya, Yu.M. Ocenka fiziko-ximicheskix parametrov otxodov raznogo sroka zaxoroneniya [Evaluation of physicochemical parameters of wastes with different disposal periods] Vestnik PNIPU. Prikladnaya e`kologiya. Urbanistika, 2015, no. 3 (19), pp. 82-96. (in Russian)
  35. Zhao, R.Z., Novak, J.T., Goldsmith, C.D. Evaluation of on-site biological treatment for landfill leachates and its impact: a size distribution study, Water Research, 2012, vol. 46, no. 12, pp. 3837-3848.
  36. Zhao, R., Gupta, A., Novak, J.T., Goldsmith, C.D. Evolution of nitrogen species in landfill leachates under various stabilization states, Waste Management, 2017, vol. 69, pp. 225-231.
  37. Zhao, Y., Song, L., Huang, R., Song, L., Li, X. Recycling of aged refuse from a closed landfill, Waste Management & Research, 2007, vol. 25, no. 2, pp. 130-138.