ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Geoekologiya, 2021, Vol. 1, P. 88-96

COMPARATIVE ESTIMATION OF POSSIBILITIES OF DELINEATION OF GEOHAZARDS USING AIRBORNE AND SATELLITE IMAGES (PIPELINE CASE STUDY)

Orlov T.V.1,*,  Zverev A.V.1Bondar V.V.1

1 Sergeev Institute of Environmental Geoscience RAS, Moscow
*E-mail: tim.orlov@gmail.com

For effective monitoring of geohazards for the pipelines, remote sensing data are the most common observation and analysis methods. Space and aerial photography are widely used to control hazardous processes occurring under natural conditions. Comparative assessment of the possibilities of identifying exogenous geological processes using airborne and satellite imagery of different resolutions is a crucial step in analyzing the quality and completeness of information obtained from images. Evaluation of information, first of all, includes a direct comparison of parameters, such as the number of foci, the length, and the area of identified exogenous processes; next the geohazard shares are compared by the number of manifestations and linear dimensions. The principal hazards were analyzed, such as flooding-waterlogging, flooding-backwater effect, thermal erosion, erosion, thermokarst, zones of hummocky peatland development. The comparative analysis of images showed a significant difference in the completeness of information interpretation. Deciphering space images makes it possible to determine up to 85% of geohazard manifestations, and the conditions for their development are almost completely identified. When interpreting aerial images, the parameters of length and area are most accurately determined. Much more centers of the geohazard manifestation are revealed, as compared to those provided from deciphering space images. Using space images and aerial photography of different resolutions in combination appears to be the best suitable way to monitor the linear structures.  

Key words:  satellite images, airborne images, deciphering, monitoring

REFERENCES

  1. Antipov, V.S., Volin, K.A, Zhuravlev, E.A. Vyyavlenie karstovykh i suffozionno-karstovykh ob'ektov po materialam kosmicheskikh s'emok v tsentral'noi chasti Vostochnoi-Evropeiskoi platformy [Identification of karst and suffusion-karst objects from space imagery in the central part of the East European platform]. Vestnik SPbGU, ser. 7. Geology. Geography, 2016, no. 4, pp. 4-16. (in Russian)
  2. Viktorov, A.S. Otsenka dinamicheskikh parametrov ekzogennykg geologicheskikh protsessov po materialam odnokratnykh aerokosmicheskikh s'emok [Estimation of dynamic parameters of exogenous geological processes based on materials of single aerospace surveys]. Geoekologiya, 2014, no. 2, pp. 146-154. (in Russian)
  3. Viktorov, A.S., Georgievskii, B.V., Kapralova, V.N., Orlov, T.V., Trapeznikova, O.N., Zverev, A.V. Opyt distantsionnogo monitoringa opasnykh geologicheskikh protsessov po trasse truboprovodnykh sistem (Vostochnaya Sibir') [Experience of remote monitoring of hazardous geological processes along the route of pipeline systems (Eastern Siberia)]. Geoekologiya, 2018, no. 6, pp. 50-58. (in Russian)
  4. Viktorov, A.S., Kapralova, V.N., Arkhipova, M.V. Modelirovanie razvitiya morfologicheskoi struktury erozionno-termokarstovykh ravnin s ispol'zovaniem materialov distantsionnykh s'emok [Modeling the development of the morphological structure of erosion-thermokarst plains using remote sensing data]. Issledovanie Zemli is kosmosa, 2019, no. 2, pp. 55-64. (in Russian)
  5. Likhvidov, A.A., Chernomurov, M.V., Grishin, V.V. Metodicheskii apparat tematicheskogo deshifrirovaniya dannykh distantsionnogo zondirovaniya Zemli v koridore magistral'nylh gazorpvodov [Methodological apparatus for thematic interpretation of remote sensing data of the earth in the corridor of main gas pipelines]. Nauka. Innovatsii. Tekhnologii. 2013, no. 1, pp. 124-129. (in Russian)
  6. Metodicheskoe rukovodstvo po inzhenerno-geologuicheskoi s'emke masshtaba 1:200000 [Methodical guide for engineering-geological survey of scale 1: 200000]. Moscow, Nedra Publ., 1978, 393 p. (in Russian)
  7. Metody distantsionnogo zondirovaniya Zemli pri reshenii prirodoresursnykh zadach [Methods of remote sensing of the Earth in solving natural resource problems]. Morozov, A.F., Pertsov, A.V., Eds. St. Petersburg, VSEGEI Publ. 2004. (in Russian)
  8. Nikolaev, G.B., Illarionov, V.A., Weiss, K.E. Primenenie distantsionnykh s'emok pri proektirovanii i stroitel'stve lineinykh sooruzhenii v usloviyakh Evropeiskogo Severa [The use of remote sensing in the design and construction of linear structures in the European North]. Vestnik instituta geologii Komi NTs UrO RAN, 2011, no. 11, pp. 20-23. (in Russian)
  9. Pupyrev, M.A. Deshifrirovanie i indikatsiya sovremennykh ekzogennykh protessov v geokriologicheskom monitoringe kriolotozony [Deciphering and indication of modern exogenous processes in permafrost geocryological monitoring]. Vestnik Tyumenskogo gosudarstvennogo universiteta, 2013, no. 4, pp. 67-75. (in Russian)
  10. Pupyrev, M.A., Ivanov, O.E. GIS-analiz inzhenerno-geokriologicheskikh uslovii osvoeniya zapadnogo Yamala na osnove priemov landshaftnoi indikatsii [GIS analysis of engineering and geocryological conditions for the development of western Yamal on the basis of landscape indication techniques]. Vestnik Tyumenskogo gosudarstvennogo universiteta, 2008, vol. 3, no. 2, pp. 215-222. (in Russian)
  11. Satdarov, A.Z. Metody issledovaniya regressivnogo rosta ovragov: dostoinstva i nedostatki [Methods for studying the regressive growth of ravines: advantages and disadvantages]. Uchenye zapiski Kazanskogo universiteta. Ser. Estestvennye nauki. 2016, vol. 158, no. 2, pp. 277-292. (in Russian)
  12. Sergeev, D.O., Perlshtein, G.Z., Khimenkov, A.N., Khalilova, Yu.V., Ugarov, A.N. Aerovisual surveys to assess the hazard of exogenous geological processes along the main oil pipeline route (Chapter 13). Bezopasnost' Rossii. Pravovue, sotsial'no-ekonomicheskie i nauchno-tekhnicheskie aspekty. Bezopasnost' sredstv khraneniya i ucheta energoresursov [Safety of Russia. Legal, socio-economic and scientific and technical aspects. Safety of means of storage and transport of energy resources]. Moscow, Znanie Publ., 2019, pp. 295-309. (in Russian)
  13. Slagoda, E.A., Ermak, A.A. Deshifrirovanie ekzogennykh protsessov tipichnykh tundr poluostrova Yamal na primere territorii raiona srednego techeniya reki Yuribei [Deciphering the exogenous processes of typical tundra of the Yamal Peninsula on the example of the territory of the middle reaches of the Yuribei river]. Vestnik Tyumenskogo gosudarstvennogo universiteta, ser. Nauki o Zemle, 2014, no. 4, pp. 28-38. (in Russian)
  14. Kholodilov, I.V. Kompleksnoe kartografirovanie etalonnykh zonal'nykh struktur na osnove analiza dannykh distantsionnogo zondirovaniya [Complex mapping of reference zonal structures based on the analysis of remote sensing data]. Vestnik Tyumenskogo gosudarstvennogo universiteta, 2009, no. 3, pp. 29-35 (in Russian).
  15. Yakutin, M.V., Puchnin, A.N. Monitoring termokarstovykh obrazovanii v tsentralnoi Yakutii s ispol'zovaniem metodov distantsionnogo zondirovaniya [Monitoring of thermokarst formations in central Yakutia using remote sensing methods]. Interekspo Geo-Sibir', 2014, vol. 4, no. 2, pp. 120-124. (in Russian)
  16. Liljedahl, A.K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nature geoscience, 2016, pp. 1-8.
  17. Boike, J., Yoshikawa, K. Mapping of Periglacial Geomorphology using Kite // Balloon Aerial Photography. Permafrost and periglacial processes, 2003, vol. 14, pp. 81-85.
  18. Sannel, A.B.K., Brown, I.A. High-resolution remote sensing identification of thermokarst lake dynamics in a subarctic peat plateau complex. Canadian J. of Remote Sensing. 2010, vol. 36, no. 1, pp. S26-S40.
  19. Eroglu, H. et al. Using high resolution images and elevation data in classifying erosion risks of bare soil areas in the Hatila Valley Natural Protected Area, Turkey. Stoch. Environ. Risk Assess., 2010,  no. 24, pp. 699-704.
  20. Günther F. et al. Observing Muostakh disappear: permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction. The Cryosphere. 2015, no. 9, pp. 151-178.
  21. Hinke, K.M. et al. Methods to assess natural and anthropogenic thaw lake drainage on the western Arctic coastal plain of northern Alaska. Journal of geophysical research, 2007, vol. 11, F02S16.
  22. Liu, L., Schaefer K., et al. Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska. The Cryosphere, 2014, no. 8, pp. 815-826.
  23. Ulrich, M., Grosse, G., Strauss, J., Schirmeister, L. Quantifying wedge-ice volumes in Yedoma and thermokarst basin deposits. Permafrost and periglacial processes. 2014.
  24. Victorov, A.S., Orlov, T.V., Kapralova, V.N., Trapeznikova, O.N., Sadkov, S.A., Zverev, A.V. Stochastic modeling of human-induced thermokarst and natural risk assessment for existing and planned engineering structures. Natural Hazards and Risk Research in Russia. Svalova, V., Ed. 2019, Springer, Cham, pp. 219-239.