ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Geoekologiya, 2022, Vol. 2, P. 48-62

ANALYSIS OF ENGINEERING GEOLOGICAL CONDITIONS AND VARIABILITY OF FINE-GRAINED DEPOSITS NEAR SINKHOLES IN THE CARBONATE-SULFATE KARST AREAS 

E. V. Drobinina 1,*, D. R. Zolotarev 2,**

Perm State University, ul. Bukireva, 15, Perm, 614068 Russia

Karst-Control and Bank ProtectionLLC, ul. Sushchevskiival, 5, str. 3, Moscow, 3127018 Russia

*E-mail: alenadrobinina@yandex.ru
**E-mail: zolotarevdr@mail.ru

The paper deals with the analysis of engineering geological conditions in the carbonate and sulfate karst region with widespread surface karst landforms. Engineering geological conditions in the study area (Dobryanskii region, Perm krai) are scrutinized in detail. The areal variability of soil state within the karst fields is assessed on the basis of the analysis of two-dimensional point clouds describing the relationship between the considered property and the density of karst landforms. Special attention is paid to the sites not subjected directly to collapses. Groundwater discharge to fractured karstic horizon is controlled by karst sinkholes in the study area. The higher the amount of sinkholes per square unit (density) is, the more intensely infiltration goes, and also the post-sedimentation alteration of soil properties related to groundwater percolation to discharge areas. It is shown that with rising density of karst landforms immediately beyond the limits of these areas, variability of properties of the uppermost soil layer manifests the increasing soil density and decreasing the porosity coefficient, the natural moisture and the fine-grained fraction content. The ground moisture decreases with the rising density of sinkholes, which is due to high infiltration by fractures and high ground massif permeability.

 

Key words: overlying soil massif, variability of properties, physical properties, grain-size distribution, sinkholes, carbonate and sulfate karst

REFERENCES

  1. Anikeev, A.V. Provaly i voronki osedaniya v karstovykh raionakh: mekhanizmy obrazovaniya, prognoz i otsenka riska [Sinkholes and subsidence of the earth's surface in karst areas: mechanisms of formation, forecast and risk assessment]. Moscow, RUDN Publ., 2017, 328 p. (in Russian)
  2. Anikeev, A.V., Sulimova, A.Yu., Chumachenko, S.A. Inversiya svoistv gruntov, slagayushchikh molodye karstovo-suffozionnye voronki [Inversion of soil properties within young karst-suffusion sinkholes]. Sergeev Readings. International year of planet Earth: problems in environmental geoscience, engineering geology and hydrogeology. Moscow, GEOS Publ., 2008, issue 10, pp. 6-11. (in Russian)
  3. Butyrina, K.G. Gipsovyi karst tsentral'noi chasti Permskoi oblasti [Gypsum karst in the central part of the Perm region]. Cand. Sci. (Geogr.) dissertation. Perm, PSU Publ., 1968, 380 p. (in Russian)
  4. Gorbunova, K.A. Karst nekotorykh raionov Molotovskoi oblasti [Karst of some districts of the Molotov region]. Cand. Sci. (Geogr.) dissertation. Molotov (now Perm), 1956, 356 p. (in Russian)
  5. Gorbunova, K.A., Andreichuk, V.N., Kostarev, V.P., Maksimovich, N.G. Karst i peshchery Permskoi oblasti [Karst and caves of the Perm region]. Perm, PSU Publ., 1992, 200 p. (in Russian)
  6. Kataev, V.N., Kadebskaya, O.I. Geologiya i karst goroda Kungura [Geology and karst of Kungur city]. Perm, PSU, GI UrO RAN, 2010, 236 p.(in Russian)
  7. Kilin,Yu.A., Min'kevich, I.I. Karst Chusovskogo Mysa Kamskogo vodokhranilishcha [Karst of Chusovsky Cape of Kamsky reservoir]. Innovatsionnyi potentsial estestvennykh nauk [The innovative potential of natural sciences]. Perm, 2006, vol. 2, pp. 91–94. (in Russian)
  8. Kozhevnikova V.N. O roli dinamiki i rezhima podzemnykh vod v formirovanii karstovo-suffozionnykh protsessov (na primere nekotorykh raionov g. Moskvy) [The role of dynamics and regime of groundwater in the formation of karst-suffosion processes (on the example of some districts of Moscow)]. Inzhenernye izyskaniya pri stroitel'stve [Engineering survey during construction], vol. 5(33), series 2, Moscow, 1974, pp. 22–27. (in Russian)
  9. Kochev, A.D. Problema otsenki karstovo-suffozionnoi opasnosti na territorii g. Moskvy [The problem of assessing the karst-suffosion hazard in the territory of Moscow]. Izuchenie opasnykh prirodnykh protsessov i geotekhnicheskii monitoring [Hazardous natural processes research and geotechnical monitoring]. Proc. the first All-Russian scientific-practical conference. Moscow, Geomarketing Publ., pp. 31-43. (in Russian)
  10. Kochev, A.D. Faktory i usloviya razvitiya karstovo-suffozionnykh protsessov na territorii g. Moskvy [Factors and conditions for the development of the karst-suffosion processes in Moscow]. Inzhenernye izyskaniya, 2019, vol. XIII, no. 5-6, pp. 8-20. DOI: https://doi.org/10.25296/1997-8650-2019-13-5-6-8-20 (in Russian)
  11. Krasheninnikov, V.S., Khomenko, V.P. Izuchenie pokryvayushchei tolshchi kak odin iz vazhneishikh komponentov inzhenernykh izyskanii v raionakh pokrytogo karsta [The study of overlying massif as one of important components in site investigations in covered karst areas]. Vestnik MGSU, no. 5, 2011. pp. 113-119. (in Russian)
  12. Krasheninnikov, V.S., Khomenko, V.P. Izmenenie granulometricheskogo sostava nesvyaznykh gruntov, predshestvuyushchee karstovo-suffozionnomu provaloobrazovaniyu [Changing particle-size dsitribution in noncohesive soils that precedes karst-suffosion sinkhole formation]. Inzhenernaya geologiya, 2017, no. 2, pp. 52-62. (in Russian)
  13. Kungurskaya ledyanaya peshchera: opyt rezhimnykh nablyudenii [Kungur ice cave: an experience of regime observations]. V.N. Dublyanskii, Ed., Yekaterinburg, 2005, 376 p. (in Russian)
  14. Kutepov, V.M., Berezkina, G.M., Zykova, N.V., Kozhevnikova, V.N., Krasnushkin, A.V., Chertkov, L.G. Karstovye protsessy i inzhenerno-geologicheskie svoistva glinistykh porod [Karst processes and engineering geological properties of clays]. Inzhenernaya geologiya, 1984, vol. 4, pp. 91–103. (in Russian)
  15. Lunev, B.S. Osobennosti stroeniya allyuviya Kamy i Chusovoi na uchastkakh razvitiya karsta [Features of the alluvium structure of Kama and Chusovaya rivers in the areas of karst development]. Uchenye zapiski PGU, 1961, vol. XVIII, no. 2, pp. 13-16. (in Russian)
  16. Maksimovich, G.A. Osnovy karstovedeniya. T. 1: Voprosy morfologii karsta, speleologii i gidrogeologii karsta [Fundamentals of karst studies. Vol. 1: Issues of karst morphology, speleology and karst hydrogeology]. Perm, 1963, 447 p. (in Russian)
  17. Nazarov, N.N. Karst Prikam'ya. Fiziko-geograficheskie (geomorfologicheskie) aspekty [Karst of the Kama region. Physico-geographical (geomorphological) aspects]. Perm, 1996, 95 p.(in Russian)
  18. Pecherkin, A.I. Geodinamika sul'fatnogo karsta [Geodynamics of sulfate karst]. Irkutsk, 1986. 172 p. (in Russian)
  19. Pecherkin, A.I., Zakoptelov, V.E. Karst i suffoziya na beregakh vodokhranilishch [Karst and suffosion on the banks of reservoirs]. Perm, PSU Publ., 1982, 88 p. (in Russian)
  20. Pecherkin, I.A. Geodinamika poberezhii Kamskikh vodokhranilishch. [Geodynamics of the Kama reservoirs coasts]. Part I. Perm, 1966, 198 p. (in Russian)
  21. Ponomarev, A.B., Popov, S.G., Zavorokhin, A.F. Karstovyi proval v d. Gorodishche [Karst sinkhole in the village of Gorodishche]. Izuchenie Ural'skikh peshcher: doklady 2i i 3i konf. speleologov Urala [Exploring the Ural Caves. Reports at the 2nd and 3rd conferences of the Urals speleologists]. Perm, 1992, pp. 53–54. (in Russian)
  22. Skhema tektonicheskogo raionirovaniya masshtaba 1:5 000 000. List O-40. [Scheme of tectonic zoning scale of 1: 5,000,000. Sheet O-40] Moscow, VSEGEI, LLC Comp, JSC UGSE, 2014. (in Russian)
  23. Chen, X., Zhang, Z., Chen, X. et al. The impact of land use and land cover changes on soil moisture and hydraulic conductivity along the karst hillslopes of southwest China. Environ. Earth Sci.2009, no. 59, pp. 811–820. https://doi.org/10.1007/s12665-009-0077-6.
  24. Fu, Z.Y., Chen, H.S., Zhang, W., Xu, Q.X., Wang, S., Wang, K.L., 2015. Subsurface flow in a soil-mantled subtropical dolomite karst slope: a field rainfall simulation study. Geomorphology. 2015, vol. 250, pp.1-14. https://doi.org/10.1016/j.geomorph.2015.08.012.
  25. Milanović, P. Water resources engineering in karst. Boca Raton, Florida, USA, 2005. 328 p.
  26. Xiao, X., Xu, M., Ding, Q. et al. Experimental study investigating deformation behavior in land overlying a karst cave caused by groundwater level changes. Environ. Earth Sci., 2018, no. 77(3). https://doi.org/10.1007/s12665-017-7102-y.
  27. Youjin, Y., Quanhou, D., Li, J., Xiangdong, W. Geometric morphology and soil properties of shallow karst fissures in an area of karst rocky desertification in SW China. Catena, 2019, no. 174, pp. 48–58. https://doi.org/10.1016/j.catena.2018.10.042.