ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Geoekologiya, 2022, Vol. 2, P. 21-32

TECHNOGENIC CHANGES IN THE GROUND WATER REGIME IN THE BUILT-UP AREAS (GEOECOLOGICAL, ENGINEERING GEOLOGICAL AND HYDROGEOLOGICAL ASPECTS)  

V.V. Funikova 1, *, I. V. Dudler 2. **R. T. Butaev 3, ***

1Geological Faculty, Lomonosov Moscow State University,
Leninskie Gory 1, Moscow,119234 Russia

 

2Scientific Council RAS on the problems in environmental geoscience, engineering geology and hydrogeology, Ulanskii per., 13, str. 2, Moscow,101000 Russia

3Alterkasa LLC, Moscow, 1st Truzhnikov per., 17 A, 119121Russia

*E-mail: funikova@geol.msu.ru;
**E-mail: div-33@yandex.ru;
***E-mail: butaev.r.t@gmail.com

The groundwater regime changes permanently under technogenic impact in the built-up areas, with groundwater being the most dynamic component of the geological environment. Attention is drawn to the complex changes in groundwater regime, resulting in a number of undesired geoecological, engineering geological and hydrogeological consequences, which control the difficulty of engineering geological conditions for construction. We assume certain cycles in technogenic changes in the groundwater regime and the geological environment as a whole, complying with the technological progress and the urban development level. The article covers briefly the surface subsidence in megacities typical for the XX and early XXI centuries caused by intense and long-term water intake for drinking and technical water supply. The importance of long-term predicting technogenic changes in the groundwater regime is emphasized, in particular, long-term flooding forecasts in Moscow. The special importance of monitoring and control over the vertical filtration gradient in built-up areas with a potential karst-suffosion hazard is shown. It is proposed to include a map of vertical filtration gradients in the set of hydrogeological maps for engineering survey. In conclusion, the need for a systematic approach to the study and consideration of technogenic changes in the groundwater regime is noted, including the arrangement of hydrogeological monitoring; inclusion of the vertical filtration gradient map in the set of hydrogeological maps; compilation of hydrogeological models of the city and its municipal districts, as well as especially hazardous and technologically complex engineering structures (based on mathematical, analogue and physical modeling); and long-term forecasting.

Keywords: groundwater, technogenic changes in the groundwater regime; geoecological, engineering geological and hydrogeological aspects

REFERENCES

  1. Anikeev, A.V. Provaly i voronki osedaniya v karstovykh rayonakh: mekhanizmy obrazovaniya, prognoz i otsenka riska [Collapses and subsidence sinkholes in karst areas: formation mechanisms, forecast and risk assessment]. Moscow, RUDN Publ., 2017, 325 p. (in Russian)
  2. Anikeev, A.V. Provaly i osedaniya zemnoi poverkhnosti v karstovykh raionakh: modelirovanie i prognoz [Collapses and subsidence of the day surface in karst areas: modeling and forecast]. Extended abstract Doct. (Geol.-Min. Sci.) dissertation, Moscow, IEG RAS, 2014, 47 р. (in Russian)
  3. Butaev, R.T. K voprosu o dolgosrochnom prognozirovanii tekhnogennogo podtopleniya megapolisov [About long-term forecasting of technogenic flooding in megacities]. IV Denisovskie chteniya “Problemy obespecheniya ekologicheskoi bezopasnosti stroitel'stva” [The 4th Conference in commemoration of N.Ya Denisov "Problems of ensuring environmental safety in construction"].Moscow, MGSU Publ., 2008, pp. 138-140. (in Russian)
  4. Golodkovskaya, G.A., Demidyuk, L.M. Nekotorye metodologicheskie voprosy otsenki tekhnogennykh izmenenii geologicheskoi sredy [Some methodological issues in assessing human-induced changes in geological environment] // Kompleksnye otsenka i prognoz tekhnogennykh izmenenii geologicheskoi sredy. Mater. Seminara, dek.1983 [Combined assessment and prediction of human-induced changes in geological environment. Workshop Proc., Dec. 1983]. V.T.Trofimov, Ed.-in-chief, Moscow, Nauka Publ., 1985, p. 11-17.
  5. Golodkovskaya, G.A., Lebedeva, N.I. Inzhenerno-geologicheskoe raionirovanie territorii Moskvy [Engineering geological zoning of the Moscow territory].Inzhenernaya geologiya, 1984, no. 3, pp. 87-102. (in Russian)
  6. Gorlovskii, B.L., Shekhtman, L.M. Tekhnogennoe podtoplenie ploshchadok AES i TES [Technogenic flooding of NPP and Thermal power plant sites]. Energetika i elektrofikatsiya: obzornaya informatsiya [Energy and electrification: overview]. Issue 3, series 3. Nuclear power plants. Moscow, Informenergo Publ., 1986. 58 p.(in Russian)
  7. Dzektser, E.S. Kontseptsiya zashchity istoricheskogo goroda ot podtopleniya: (Na primere g. Rostova Velik.) [The concept of protecting a historical town from flooding (by the example of Rostov the Great). Moscow, GUP CPP, 1999. 52 p. (in Russian)
  8. Dzektser, E.S., Pyrchenko, V.A. Tekhnologiya obespecheniya ustoichivogo razvitiya urbanizirovannykh territorii v usloviyakh vozdeistviya prirodnykh opasnostei [Technology for ensuring sustainable development of urbanized territories under the influence of natural hazards]. Moscow, ZAO DAR/VODGEO Publ., 2004, 166 p. (in Russian)
  9. Dudler, I.V. Klassifikatsiya zastraivaemykh i zastroennykh territorii po podtopleniyu [Classification of built-up areas and areas under development according to flooding]. I Denisovskie chteniya [Proc. of the first conference in commemoration of N.Ya. Denisov]. Moscow, MGSU, 2000, pp. 42-49. (in Russian)
  10. Dudler, I.V., Vorontsov, E.A., Butaev, R.T. Litotekhnicheskii monitoring na gorodskikh territoriyakh: kontseptsiya, metodika, printsipy, napravleniya ispol'zovaniya [Lithotechnical monitoring in urban areas: the concept, methods, principles, and ways of application] Monitoring geologicheskih, litotekhnicheskikh i ekologo-geologicheskikh system: Tr. Mezhd. nauchnoi konf. [Monitoring of geological, lithotechnical and ecological and geological systems. Proc. Int. Sci. Conf.].V.T. Trofimov, V.A. Korolev, Eds., Moscow, MSU Publ., 2007, pp. 47-48. (in Russian)
  11. Dudler, I.V., Funikova, V.V. Geologicheskaya sreda v sovremennuyu epokhu: prioritety izucheniya i otsenki s pozitsii inzhenernoi i ekologicheskoi geologii [Geological environment in the modern era: priorities of study and evaluation from the standpoint of engineering and environmental geology]. Proc. Int. Sci. Conf. "New ideas and theoretical aspects of engineering geology". V.T. Trofimov, V.A. Korolev, Eds., Moscow, Sam Poligrafist Publ., 2021, pр. 108-113. (in Russian)
  12. Kozlyakova, I.V., Kutepov, V.M., Anisimova, N.G., Kozhevnikova, I.A. Otsenka karstovo-suffozionnoi opasnosti v Moskve dlya upravleniya karstovym riskom v masshtabakh goroda [Assessment of karst-suffusion hazard in Moscow to manage karst risk on a city level]. Upravlenie riskami chrezvychainykh situatsii. Doklady i vystupleniya [Emergency risk management. Proc. of the Conf. reports and speeches]. 2001, pp. 205-207. (in Russian)
  13. Kompleksnye otsenka i prognoz tekhnogennykh izmenenii geologicheskoi sredy. Mater. Seminara, dek.1983 [Combined assessment and prediction of human-induced changes in geological environment. Workshop Proc., Dec. 1983]. V.T.Trofimov, Ed.-in-chief, Moscow, Nauka Publ., 1985, 103 p.
  14. Kutepov, V.M., Kozhevnikova, V.N. Kompleksnaya otsenka ustoichivosti massivov porod v karstovykh raionakh pri tekhnogennom vozdeistvii [Combined assessment of rock massif stability in karst-prone areas upon human impact]// Kompleksnye otsenka i prognoz tekhnogennykh izmenenii geologicheskoi sredy. Mater. Seminara, dek.1983 [Combined assessment and prediction of human-induced changes in geological environment. Workshop Proc., Dec. 1983]. V.T.Trofimov, Ed.-in-chief, Moscow, Nauka Publ., 1985, p. 79-85.
  15. .Kutepov, V.M., Kozlyakova, I.V., Anisimova, N.G., Eremina, O.N., Kozhevnikova, I.A. Otsenka karstovoi i karstovo-suffozionnoi opasnosti v proekte krupnomasshtabnogo geologicheskogo kartirovaniya g. Moskvy [Assessment of karst and karst-suffusion hazards in the project of large-scale geological mapping of Moscow]. Geoekologiya, 2011,no. 3,pp. 215-226.(in Russian)
  16. Moskva. Geologiya i gorod [Moscow. Geology and the city]. V.I. Osipov, O.P. Medvedev, Eds., Moscow, Moskovskie uchebniki i Kartolitografiya, 1997, 400 p. (in Russian)
  17. Osipov, V.I. Zony geologicheskogo riska na territorii g. Moskvy [Geological risk zones in the territory of Moscow]. Vestnik RAN, 1994, vol. 64, no. 1, pp. 32-45. (in Russian)
  18. Fi, Kh.T., Strokova, L.A. Karty prognoza osedaniya zemnoi poverkhnosti v rezul'tate izvlecheniya podzemnykh vod v gorode Khanoe (V'etnam) [Maps of subsidence forecast on the day surface as a result of groundwater extraction in Hanoi (Vietnam)].Geoekologiya, 2016, no. 6, pp. 543-556.(in Russian)
  19. Khomenko, V.P. Zakonomernosti i prognoz suffozionnykh protsessov [Regularities and forecast of suffusion processes]. Extended abstract Doct. (Geol.-Min. Sci.) dissertation, Moscow, 2004, 38 p. (in Russian)
  20. Cabral-Cano, E., Dixon, T. H., Miralles-Wilhelm, F., Diaz-Molina,et al. Space geodetic imaging of rapid ground subsidence in Mexico City. Geological Society of America Bulletin, 2008, vol. 120, no. 11, pp. 1556-1666.
  21. Doudler, I.V., Vorontsov, E.A., Liarski, S.P. Engineering geology priorities in XXI century. In: Global View of Engineering Geology and the Environment. Proc. of the Intern. Simp. and 9th Asian Reg. Conf. of IAEG, 2013, pp. 575-580.
  22. Phien-wej, N., Giao, P.H., Nutalaya, P. Land subsidence in Bangkok, Thailand. Engineering Geology, 2006, vol. 82, no.4, pp. 187-201.
  23. Pirouzi, A., Eslami, A. Ground subsidence in plains around Tehran: site survey, records compilation and analysis. Int. Journal of Geo-Engineering, 2017, vol. 8, no. 1, pp. 1-21.
  24. Sato, C., Haga, M., Nishino, J. Land subsidence and groundwater management in Tokyo. International Review for Environmental Strategies, 2006, vol. 6, no. 2, pp. 403-424.
  25. Waltham, T. Sinking cities – Feature. Geology Today, 2002, vol. 18, no. 3, pp. 95-100. DOI: 10.1046/j.1365-2451.2002.00341.x
  26. Xu, Y., Shen, S.-L., Cai, Z.-Y., Zhou, G.-Y. The state of land subsidence and prediction approaches due to groundwater withdrawal in China. Natural Hazards, 2008, vol. 45(1), pp. 123-135.
  27. Zhu, L., Gong, H., Li, X., Wang, R., Chen, B., Dai, Z., Teatini, P. Land subsidence due to groundwater withdrawal in the northern Beijing plain, China. Engineering Geology, 2015, vol. 193, pp. 243-255. DOI: 10.1016/j.enggeo.2015.04.020