ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Geoekologiya, 2022, Vol. 4, P. 65-74

THE USE OF REMOTE SENSING DATA FOR PROBABILISTIC ASSESSMENT OF IMPACT ON A LINEAR STRUCTURE 

Victorov A.S.1, Arkhipova M.V.1

1Sergeev Institute of Environmental Geoscience RAS (IEG RAS) Ulansky per. 13, bld. 2, Moscow, 101000

This research is aimed at developing the remote sensing technique for assessing probability of impact on linear engineering structures by the example of lateral river erosion. The suggested approach for assessing probability of impact on linear engineering structures takes into account the process of lateral erosion, bending and straightening of bends is at the same time the main formatting factor for the landscape morphological pattern of alluvial plains. The base of the technique is a mathematical model of the landscape morphological pattern for alluvial plains. It was essentially tested at key sites within river valleys in different nature environments. The exponential distribution of arrows of the packages and time of bend development is a general law of the landscape morphological pattern of the alluvial plains in different nature environments; numerous testing results confirm it. The model of the alluvial plain morphological pattern gives a solution of the quantitative assessment of the impact probability to a linear structure by river erosion under limited conditions; the necessary parameters can be estimated from the remote sensing data.

Key words: mathematical morphology of landscapes, alluvial plains, probability of impact to engineering structures, remote sensing data techniques, modelling, river erosion 

REFERENCES

  1. Viktorov, A.S. Matematicheskaya morfologiya landshafta  [Mathematical morphology of landscapes]. Moscow, Tratek Publ., 1998, 180 p. (in Russian)
  2. Victorov, A.S. Model’ vozrastnoi differentsiatsii alluvial’nykh ravnin [Model of age differentiation of alluvial plains]. Geoekologiya, 2007, no. 4, pp. 302-309. (in Russian)
  3. Victorov, A.S. Osnovnye problemy matematicheskoi morfologii landshafta [The main problems of mathematical morphology of landscape]. Moscow, Nauka Publ., 2006, 252 p. (in Russian)
  4. Victorov, A.S., Arkhipova, M.V., Kapralova, V.N., Orlov, T.V. Matematicheskaaya model’ riska porazheniya inzhenernykh sooruzhenii initsiirovannymi termokarstovymi protsessami [Mathematical model for risk of damage to engineering structures by human-induced thermokarst processes]. Geoekologiya, 2020, no. 3, pp. 82-90. DOI 10.31857/S0869780920030108. (in Russian)
  5. Viktorov, A.S., Berezin, P.V., Kapralova, V.N. Razrabotka programmnogo paketa otsenki prirodnykh riskov na osnove materialov povtornykh distantsionnykh s’emok [Development of a software package for natural risk assessment based on repeated remote sensing data]. Issledovanie Zemli iz kosmosa, 2017, no. 5, pp. 57-65. DOI 10.7868/S0205961417050062. (in Russian)
  6. Victorov, A.S., Kapralova, V.N., Orlov, T.V. et al. Matematicheskaya morfologiya landshaftov kriolitozony [Mathematical morphology of cryolithozone landscapes]. Moscow, RUDN Publ, 2016, 232 p. (in Russian)
  7. Viktorov, A.S., Trapeznikova, O.N. Matematicheskaya model' morfologicheskoi struktury allyuvial'nykh ravnin kak odna iz osnov deshifrirovaniya materialov kosmicheskikh s’yemok [Mathematical model of the morphological pattern of alluvial plains as one of the bases for remote sensing data interpretation]. Issledovanie Zemli iz kosmosa, 1997, no. 2, pp. 44. (in Russian)
  8. Larionov, G.A., Litvin, L.F., Krasnov, S.F., Kiryukhina, Z.P., Dobrovol’skaya, N.G. Eksperimental’nye issledovaniya razmyva beregovykh obryvov i otkosov [Experimental research of the cliffs and banks washaway]. Geomorfologiya, 2016, no. 2, pp.51-58. DOI 10.15356/0435-4281-2016-2-51-58. (in Russian)
  9. Padalko, Y.A., Chibilev, A.A. Problemy razvitiya ruslovykh protsessov v basseine r.Ural [Problems of riverbed evolution in the basin of the Ural River]. Doklady Akademii Nauk, 2017, vol. 475, no. 6, pp. 702-705. DOI 10.7868/S0869565217240215. (in Russian)
  10. Panin, A.V., Sidorchuk, A.Yu., Chernov, A.V. Osnovnye etapy formirovaniya poim ravninnykh rek Severnoi Evrazii [The main stages of the flood-plain formation in northern Eurasia]. Geomorfologiya, 2011, no. 3, pp. 20-31. (in Russian)
  11. Skapintsev, A.E., Potapov, A.D., Lavrusevich, A.A. Inzhenernaya zashchita truboprovodov ot erozionnykh protsessov [Engineering protection of pipelines from erosion processes]. Vestnik MGSU, 2013, no. 7, pp. 140-151. (in Russian)
  12. Strokova, L.A., Ermolaeva, A.V. Prirodnye osobennosti stroitel’stva magistral’nogo gazoprovoda “Sila Sibiri’ na uchastke Chayandinskoe neftegazokondensatnoe mestorozhdenie-Lensk [Natural features of constructing the main gas pipeline “Power of Siberia” on a Chayandinskoye oil and gas field site – Lensk]. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 2015, vol. 326, no. 4, pp. 41-55. (in Russian)
  13. Fikhtengol'ts, G.M. Kurs differentsial'nogo i integral'nogo ischisleniya [Course of differential and integral calculus]. Moscow, Fizmatlit Publ., vol. 3, 2003. 632 p. (in Russian)
  14. Chigir, V.G., Vlasov, S.V., Gorbatov, V.A., Raukh, M.V., et all.  Ispol’zovanie materialov distantsionnykh s’emok dlya povysheniya nadezhgnosti gazoprovodov v kriolitozone [The use of remote sensing data to improve the reliability of gas pipelines in the permafrost zone]. Gazovaya promyshlennost', 2014, no. 7(709), pp. 48-55. (in Russian)
  15. Ekologiya erozionno-ruslovykh sistem Rossii [Ecology of erosion-channel systems in Russia], R.S. Chalov, Ed., Мoscow, Geograficheskii fakul’tet MGU, 2002, 163 p. (in Russian)
  16. Roslan Zainal Abidin, Mohd Sofiyan Sulaiman, Naimah Yusoff. Erosion risk assessment: A case study of the Langat River bank in Malaysia. International Soil and Water Conservation Research, vol. 5, issue 1, 2017, pp. 26-35.
  17. Joung, R.W. The patterns of some meandering valleys in New South Wales. Austral. Geogr. 1970, vol. 11, no. 3, pp. 269-277.
  18. Lotsari, E. Hackney, C. Salmela, J. Kasvi, E. Kemp, J. Alho, P. Darby, S.E. Sub-arctic river bank dynamics and driving processes during the open-channel flow period. Earth Surface Processes and Landforms. 2019. DOI: 10.1002/esp.4796.
  19. Li, X., Cooper, J.R., Plater, A.J. Quantifying erosion hazards and economic damage to critical infrastructure in river catchments: Impact of a warming climate. Climate Risk Management, 2021, vol. 32. DOI: 10.1016/j.crm.2021.100287