ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Geoekologiya, 2020, Vol. 5, P. 78-88

THE MAIN PRINCIPLES OF RISK ASSESSMENT IN URBANIZED AREAS 

V. N. Burova 1,*

1 Sergeev Institute of Environmental Geosciences Russian Academy of Sciences, Ulanskii per. 13, bld. 2, Moscow, 101000 Ruussia
*E-mail:  valentina_burova@mail.ru 

Methodological approaches to assessing the risk for urbanized territories have been developed proceeding from the risk-formation models. They are caused by the interaction of natural and technogenic factors. Riskformation models correspond to the final zoning taxon by these factors. The final zoning taxon has an alphanumeric code. Each factor is assigned a corresponding score based on expert evaluation. The integral score of the risk model results from the sum of scores of natural and technogenic factors and the sum of scores of all possible relationships between factors. Ranking by risk categories is based on matrices of possible combinations between natural and man-made factors and all their possible interactions. Seven main models of risk formation and 4 risk categories have been distinguished with the corresponding scores: low – less than 20, medium – 20–53, high – 54–85; and very high - more than 85. Based on the proposed risk assessment approaches, the Pokrovskoe–Streshnevo site within the North-Western administrative district of Moscow was mapped by risk categories. The results obtained can be recommended to city authorities for the development of programs for safe land-use and (or) development and reconstruction of the research area.

Key words: urbanized area, natural and technogenic factors, hazard recipients, risk models, risk assessment

REFERENCES

  1. Anopchenko, T.Yu., Murzin, A.D., Savon, D.Yu., Safronov, A.E. Analiz riskov razvitiya urbanizirovannykh territorii [Risk analysis of urban area development]. Ekonomika v promyshlennosti, 2016, no. 3, 2016, рp. 202– 208. DOI: 10.1707/2072-1663-2016-3-202-208. (in Russian)
  2. Burova, V.N. Osobennotsti raionirovania urbanizirovannykh territorii dlya otsenok riska ot opasnykh prirodnykh protsessov [Specific features of zoning urbanized territories for assessing risk caused by natural hazards]. Geoekologiya, 2019, no. 6, pp. 106–111. DOI:10.31857/S0869.780920196106.111. (in Russian)
  3. Kalmanova, V.B. Geoekologicheskoe kartografirovanie urbanizirovannykh territorii (na primere g. Birobidzhana) [Geoeological mapping of urbanized territories (by the example of Birobidzhan)]. Proc. International Conference “InterKarto. InterGIS”. 2015, 21(1), pp. 566–574. DOI: 10.24057/2414-9179-2015-1-21-566-574 (in Russian).
  4. Kochurov, B.I., Ivashkina, I.V., Fomina, N.V., Lobkovskaya, L.G. Printsipy i priemy razvitiya sovrfemennogo goroda kak slozhnoi urboekosistemy [Principles and methods of modern city development as a complex urboecosystem]. Gradostroitel’stvo i planitovanie sel’skikh naselennykh punktov, 2018, no. 3, pp. 83–89. DOI: 10.24411/1816-1863-2018-13083. (in Russian)
  5. Kust, G.S., Andreeva, O.E., Lobkovskii, V.A., Kostowska, S.K. Metodicheskie podkhody k razrabotke tipologii modelei ustoichivogo zemlepol’zovaniya [Methodological approaches to developing a typology of sustainable land use models]. Ekologiya urbanizirovannykh teritorii, 2019, no. 3, pp. 34–40. DOI: 10.24411/1816-1863-2019-13034/ (in Russian)
  6. Legget, R. Goroda i geologiya [Cities and geology]. Translated from English, Moscow, Mir, 1976, 559 pp. (in Russian)
  7. Lyubimova, T.V., Bondarenko, N.A., Stognii, V.V., Pogorelov, A.V. Razrabotka nauchno-metodicheskikh osnov otsenki integral’nogo riska proyavleniya eksogennykh geologicheskikh protsessov na territorii Krasnodarskogo kraya [Development of scientific and methodological bases for assessing the integral risk of exogenous geological processes in Krasnodar krai territory]. Byulleten’ nauki i praktiki (Online journal), 2017, no. 11 (24), pp. 205–214. Accessed: http://www.bulletennauki.com/luybimova. (in Russian)
  8. Novikov, A.A., Ignatov, E.I., Isaev, V.S., et al. Assessment of geoecological risks of urbanized coastal territories. Geopolitika i ekogeodinamika regionov [Geopolitics and ecogeodynamics of regions], 2018, vol. 4 (14), is. 4, pp. 100–108. (in Russian)
  9. Osipov, V.I., Burova, V.N., et al. Karta krupnomasshtabnogo (detal’nogo) inzhenerno-geologicheskogo raionirovaniya territorii g. Moskvy [Map of large-scale (detailed) engineering geological zoning of the Moscow territory]. Geoekologiya, 2011, no. 4, pp. 306–319. (in Russian)
  10. Osipov, V.I., Eremina, O.N., Kozlyakova, I.V. Otsenka ekzogennykh opasnostei i geologicheskogo riska na urbanizirovannykh territoriyakh (obzor zarubezhnogo opyta) [Assessment of exogenous hazards and geological risk in urbanized territories (review of foreign experience)]. Geoekologiya, 2017, no. 3, pp. 3–15. (in Russian)
  11. Prirodnye opasnosti Rossii. Otsenka i upravlenie prirodnym riskom [Natural hazards of Russia. Natural risk assessment and management]. Ragozin, A.L., Ed., Мoscow, Kruk Publ., 2003. 320 p. (in Russian)
  12. De Mulder, E.F.J., Pereira, J.J. Earth Science for the city. In: Engineering geology for tomorrow’s cities. Culshaw M.G., Reeves H.J., Jefferson, I., & Spink, T.W., Eds. Geological Society, London, Engineering Geology Special Publications, 2009, 22, pp. 25–31. DOI: 10.1144/EGSP22.2
  13. Engineering geology for society and territory. Lollino G., et al., Eds., vol. 5, Springer International Publishing, Switzerland, 2015. DOI: 10.1007/978-3-319-09048-1.
  14. Legget, R.F. Cities and geology. New York, McGrawHill Book Co., 1973, 624 р.
  15. Lei, M., Gao, Y., Jiang, X. Current status and strategic planning of sinkhole collapses in China. Engineering geology for society and territory. Lollino G. et al., Eds., vol. 5, Springer International Publishing, Switzerland. 2015, pp. 529–534.
  16. Marker, B.R. Geology of megacitites and urban areas. Engineering geology for tomorrow’s cities. Culshaw, M.G., Reeves H.J., Jefferson, I., & Spink, T.W., Eds. Geological Society, London, Engineering Geology Special Publications, 2009, 22, pp. 33–48.
  17. Marker, B.R. Urban planning: the geoscience input. Developments in engineering geology. Eggers M.J., Griffiths J.S., et al., Eds., Geological Society, London. Engineering Geology Special Publication. 2016. 27, pp. 35–43. DOI: DOI:10.1144/EGSP27.3
  18. Mücella Ates. The role of smart urban solutions on the way to smart territories: smart solutions to the problems of urbanization. Information technology and communication authority, Turkey, 2020, pp. 18. DOI: 10.4018/978-1-7998-2097-0.ch001
  19. Paliaga, G., Faccini, F., Luino, F., Turconi. L. A spatial multicriteria prioritizing approach for geohydrological risk mitigation planning in small and densely urbanized Mediterranean basins. Nat. Hazards Earth Syst. Sci. Discuss. DOI:10.5194/nhess-2018-100
  20. Price, S.J., Ford, J.R., Campbell, S.D.G., Jefferson, I. Urban futures: the sustainable management of the ground beneath cities. Developments in Engineering Geology. Eggers, M.J., Griffiths J.S., et al., Eds., Geological Society, London. Engineering Geology Special Publication. 2016. 27, pp. 19–33. DOI:10.1144/EGSP27.2
  21. Price, S.J., Ford, J.R., Cooper, A.H., Neal, C. Humans as major geological and geomorphological agents in the Anthropocene: the significance of artificial ground. Philosophical Transactions of the Royal Society, A, 369, 2011, pp. 1056–1084.