ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Geoekologiya, 2022, Vol. 5, P. 73-86

 EVALUATION OF THE EFFECT OF PORE WATER SATURATION WITH GAS ON PHYSICAL PROPERTIES OF FINE COHERENT (CLAY) SOILS BY MIXING WITH ZEOLITES    

Kudaev A.A.1, Karpenko F.S.2, Korost D.V.1, Vidishcheva O.N.1, Kuchukov M.M.2

1 Geological Faculty, Lomonosov Moscow State University, Moscow, Russia
2 Sergeev Institute of Environmental Geoscience RAS (IEG RAS) Ulansky per. 13, bld. 2, Moscow, 101000

The method of preparing artificial samples (paste) of fine clay with a given gas saturation is described. The method consists in mixing zeolites presaturated with gas with bottom sediments. A pattern of changes in physical and mechanical properties due to varying water saturation, density and gas saturation was established for the samples. The proposed method allows modeling changes in the physical and mechanical properties of dispersed bottom sediments depending on the amount of gas, which is applicable for in situ conditions of bottom sediments, and changes in gas concentrations associated with both zones of focused discharge and the transformation of organic matter in bottom sediments. Modeling the soil saturation with gas on the slope, along which the subaqueous landslide developed, made it possible to estimate the contribution of gas component to the change in the strength characteristics of soils. The described method can be used in geological exploration for hydrocarbons in shelf conditions, as well as in engineering and geological surveys to assess the bearing capacity of soils when the gas saturation of bottom sediments changes.  

Key words: gas-saturated soils, bottom sediments, zeolites, gas saturation modeling, slope stability, subaqueous landslides, ct-scan

REFERENCES

  1. Bol`shakov, A.M., Egorov, A.V. Ob ispol`zovanii metodiki fazovo-ravnovesnoi degazatsii pri gazometricheskikh issledovaniyakh [The use of phase-equilibrium degassing method in gasometric studies]. Okeanologiya, 1987, vol. 27, no. 5, pp. 861-862. (in Russian)
  2. Vanin, A.A., Rul, K., Piotrovskaya, E.M., Brodskaya, E.N. Adsorbtsiya metana, azota i ikh smesei v porakh sloistogo uglerodnogo adsorbenta po dannym komp`yuternogo modelirovaniya [Adsorption of methane, nitrogen and their mixtures in pores of lamellar carbon adsorbent by the computer modeling data]. Zhurnal fizicheskoi khimii, 2006, vol. 80, no. 8, pp. 1465-1472. (in Russian)
  3. Kudaev, А.А. Opyt issledovanii subakval'nogo Krasnoyarskogo opolznya (oz.Baikal) [Experience of studying the Krasnoyarsk subaqueous landslide (Lake Baikal)]. Materialy 5-i konferentsii «Den` nauki 2020» [Proc. the 5th Science Day 2020 Conference]. Moscow, KDU, Dobvrosvet Publ., 2020, no. 5, pp. 58-61. (in Russian)
  4. Rokos, S.I. Gazonasyshchennye otlozheniya verkhnei chasti razreza Barentsevo-Karskogo shel`fa. [Gas-saturated deposits of the upper part of the section of the Barents-Kara shelf]. Cand. Sci. (Geogr.) Diss. Murmansk, Murmansk Marine Biological Institute, Kola Science Center RAS, 2009, 89 p. (in Russian)
  5. Sizova, A.A. Komp`yuternoe modelirovanie adsorbtsii i diffuzii flyuidov v uglerodnykh i silikatnykh poristykh materialakh [Computer simulation of adsorption and diffusion of fluids in carbon and silicate porous materials.]. Cand. Sci. (Chem.) Diss., St. Peterburg, St. Petersburg State University, 2015, 174 p. (in Russian)
  6. Trofimov, V.T. Voznesenskii, E.A., Korolev, V.A., Golodkovskaya, G.A., et al. Gruntovedenie [Soil and rock engineering]. Moscow, MGU Publ., 2005, 1024 p. (in Russian)
  7. Ul`yanova, M.O. Uglevodorodnye gazy v poverkhnostnykh donnykh osadkakh Yugo-Vostochnoi chasti Baltiiskogo morya [Hydrocarbon gases in surface bottom sediments in the southeastern part of the Baltic Sea]. Cand. Sci. (Geogr.) Diss., Kaliningrad, Kant Baltic Federal University, 2014. (in Russian)
  8. Khabuev, A.V., Chenskii, D.A., Solov`eva, M.A., Belousov, O.V. et al. Otsenka resursov gazovykh gidratov geofizicheskimi metodami v zone podvodnoi razgruzki gaza na sipe «Krasnyi Yar» ozera Baikal [Estimation of gas hydrate resources in the underwater gas discharge zone on the Krasny Yar seep of Lake Baikal by geophysical methods]. Nauki o Zemle i nedropol`zovanie, 2016, vol. 54, no. 1, pp. 67-74. (in Russian)
  9. Anderson, A.L., Hampton, L.D. Acoustics of gas-bearing sediments. I. Background. The Journal of the Acoustical Society of America, 1980, vol. 67, no. 6, pp. 1865-1889.
  10. Claypool, G.E., Kaplan, I.R. The origin and distribution of methane in marine sediments. In: Natural gases in marine sediments. Springer, Boston, MA, 1974, pp. 99-139.
  11. Emmel, R.H., Bjorøy, M., van Grass, G. Geochemical exploration on the Norwegian continental shelf by analysis of shallow cores. In: Petroleum geochemistry in exploration of the Norwegian Shelf. Springer, Dordrecht, 1985, pp. 239-246.
  12. Esrig, M.I., Kirby, R.C. Implications of gas content for predicting the stability of submarine slopes. Marine georesources & geotechnology, 1977, vol. 2, no. 1-4, pp. 81-100.
  13. Faber, E., Stahl, W. Analytic procedure and results of an isotope geochemical surface survey in an area of the British North Sea. London, Geological Society, Special Publications, 1983, vol. 12, no. 1, pp. 51-63.
  14. Gevirtz, J.L., Carey, B.D., Blanco, S.R. Surface geochemical exploration in the North Sea. London, Geological Society, Special Publications, 1983, vol. 12, no. 1, pp. 35-50.
  15. Grozic, J., Robertson, P., Morgenstern, N., The behaviour of loose gassy sand. Can. Geotech. J., 1999, vol. 36, no. 3, pp. 482-492.
  16. Grozic, J.L., Nadim, F., Kvalstad, T.J. On the undrained shear strength of gassy clays. Comp. Geotech., 2005, vol. 32, no. 7, pp. 483-490
  17. Hong, Y., Wang, L.Z., Yang, B. Undrained shear behaviour of gassy clay with varying initial pore water pressures. Proc. of China-Europe Conference on Geotechnical Engineering. Springer, Cham, 2018, pp. 524-528.
  18. Jayasinghe, A.G. Triaxial compression strength of methane hydrate-bearing sediments. PhD Thesis. Calgary, University of Calgary, 2013. DOI: 10.11575/PRISM/28526.
  19. Kaminski, P., Urlaub, M., Grabe, J., Berndt, C. Geomechanical behaviour of gassy soils and implications for submarine slope stability: a literature analysis. Geological Society, London, Special Publications, 2020, vol. 500, no. 1, pp. 277-288.
  20. Kar, S., Phillips, R. Submarine slope failures in gassy soils. Int. Conf. on Offshore Mechanics and Arctic Egineering. American Society of Mechanical Engineers, 2015, paper no. 56475, V001T10A015.
  21. Nageswaran, S. Effect of gas bubbles on the sea bed behaviour. Thesis (Ph.D.), United Kingdom: University of Oxford. 1983.
  22. Pietruszczak, S., Pande, G.N. Constitutive relations for partially saturated soils containing gas inclusions. Journal of geotechnical engineering, 1996, vol. 122, no. 1, pp. 50-59.
  23. Pietruszczak, S., Pande, G.N., Oulapour, M. A hypothesis for mitigation of risk of liquefaction. Geotechnique, 2003, vol. 53, no. 9, pp. 833-838.
  24. Sassen, R., Sweet, S.T., Milkov, A.V., DeFreitas, D.A., Salata, G.G., McDade, E.C. Geology and geochemistry of gas hydrates, central Gulf of Mexico continental slope. Geo-Marine Letters, 1994, no. 14, pp. 110–119. https://doi.org/10.1007/BF01203722.
  25. Sills, G.C. Wheeler, S.J., Thomas, S.D., Gardner, T.N. Behaviour of offshore soils containing gas bubbles. Geotechnique, 1991, vol. 41, no. 2, pp. 227-241.
  26. Sills, G.C., Wheeler, S.J. The significance of gas for offshore operations. Continental Shelf Research, 1992, vol. 12, no. 10, pp. 1239-1250.
  27. Sills, G.C., Gonzalez, R. Consolidation of naturally gassy soft soil. Géotechnique, 2001, vol. 51, no. 7, pp. 629-639.
  28. Sultan, N., De Gennaro, V., Puech, A. Mechanical behaviour of gas-charged marine plastic sediments. Géotechnique, 2012, vol. 62, no. 9, pp. 751-766.
  29. Sweeney, R.E. Petroleum-related hydrocarbon seep age in a Recent North Sea sediment. Chemical Geology, 1988, vol. 71, no. 1-3, pp. 53-64.
  30. Thomas, S.D. A finite element model for the analysis of wave induced stresses, displacements and pore pressures in an unsaturated seabed I: theory. Computers and Geotechnics, 1989, vol. 8, no. 1, pp. 1-38.
  31. Vidishcheva, O.N., et al. Hydrocarbon gas seepage along the Gydratny Fault (Lake Baikal). Moscow University Geology Bulletin, 2021, vol. 76, no. 4, pp. 353-365.
  32. Wang, Y., Kong, L., Wang, M. Liquefaction response of loose gassy marine sand sediments under cyclic loading. Bul. Eng. Geol. Env., 2018, vol. 77, no. 3, pp. 963-976
  33. Wei, J. Wu, T., Feng, X. et al. Physical properties of gas hydrate-bearing pressure core sediments in the South China Sea. Geofluids, 2021, vol. 2021, paper no. 6636125.
  34. Wheeler, S.J. The stress-strain behaviour of soils containing gas bubbles. PhD Thesis, Hilary, 1986, 275 p.
  35. Wheeler, S.J. The undrained shear strength of soils containing large gas bubbles. Géotechnique, 1988, vol. 38, no. 3, pp. 399-413.
  36. Wheeler, S.J. A conceptual model for soils containing large gas bubbles. Géotechnique, 1988, vol. 38, no. 3, pp. 389-397.
  37. Whelan, T., Coleman, J.M., Roberts, H.H., Suhayda, J.N. The occurrence of methane in recent deltaic sediments and its effect on soil stability. Bul. Eng. Geol. Env., 1976, vol. 13, no. 1, pp. 55-64.
  38. Wu, N. et al. Gas hydrate system of Shenhu Area, Northern South China Sea: geochemical results. Journal of Geological Research, 2011, vol. 2011.
  39. Zander, T., et al. Potential impacts of gas hydrate exploitation on slope stability in the Danube deep-sea fan, Black Sea. Marine and Petroleum Geology, 2018, vol. 92, pp. 1056-1068.
  40. Zhang, M. et al. Review of natural gas hydrate dissociation effects on seabed stability. Natural Hazards, 2021, vol.107, no. 2, pp. 1035-1045.