ГЕОЭКОЛОГИЯ


ИНЖЕНЕРНАЯ ГЕОЛОГИЯ. ГИДРОГЕОЛОГИЯ. ГЕОКРИОЛОГИЯ

Geoekologiya, 2022, Vol. 5, P. 27-38

LOCAL SEISMO-ECOLOGICAL MONITORING RESULTS IN CONNECTION WITH TO THE GEOLOGICAL ENVIRONMENT ASSESSMENT

Popov M.G.*1, Makeev V.M.*2, Popova O.G.1

 1 Lomonosov Moscow State University, Moscow, Russia
2 Sergeev Institute of Environmental Geoscience the Russian Academy of Sciences, Moscow, Russia

The article presents the results of local seismoecological monitoring of the geological environment in the Caucasian Mineralnye Vody foothills and the Balakovo, Nizhegorodskaya and Kolskaya nuclear power plants (NPP) areas located on the East European platform. Using PS-waves of remote earthquakes, the geological structure and recent geodynamic conditions are studied in these locations. The areas with abnormal wave refraction are correlated for the first time with active dislocation zones. For the geological environment in the Caucasian Mineralnye Vody and Balakovo NPP areas, the three-dimensional models of depth and velocity structures were created using the kimatics of P and PS-waves from distant earthquakes. As a result, the linear high-speed and low-contrast structural heterogeneities were revealed, which are interpreted as fault zones and specific seismogenic areas. The faults correspond to transition zones from high- to low-speed boundaries of converted wave propagation. Seismogenic volumes are high speedy. Their formation is associated with the activity of upper mantle intrusions (diapirs), the rise of which causes high elastic straining in the earth’s crust layers. For the Nizhegorodskaya and Kolskaya NPPs geological environment, three-dimensional geodynamic indicators models of anisotropy g and straining state S were built for different time intervals. As a result, these indicators anomalies were detected, pronounced in a sharp rise or reduction (sometimes almost to zero) of the geoenvironment anisotropy and strain-stress state indices. The reason is the mobility (activity) of tectonic dislocation zones. In the Nizhegorodskaya NPP area, the anomalies of geodynamic parameters are related to the extension zone pronounced in dip-slip fault fissures and suffusion-karst processes. In the Kolskaya NPP area, the distant Indonesian catastrophic earthquake with M = 7.8 influenced the change in the values of geodynamic indicators. The influence was expressed in the form of induced seismic activity. This permitted us to conclude about the elevated susceptibility of geoenvironment in the Kolskaya NPP area to external strong earthquakes and remote technogenic explosions in ore mines upon the mineral deposit extraction. The research proved that the local seismo-ecological monitoring is effective for identifying, evaluating and taking into account of deep areas with variable geodynamic parameters considered as seismogenic zones. In particular, this monitoring is acute for the geoenvironmental studies in low-active platform regions upon the engineering design of highly responsible, technologically complex and unique facilities (nuclear power plants, nuclear particle accelerators, radioactive waste disposal facilities, etc.), due to the induced seismicity problems.   

Key words: converted waves, three-dimensional models, geodynamic parameters, anisotropy, straining, deep faults, active zones, seismicity, geological environment, monitoring, nuclear power plants 

REFERENCES

  1. Gamburtsev, A.G. Seismicheskii monitoring litosfery [Lithosphere seismic monitoring]. Moscow, Nauka Publ., 1982, 200 p. (in Russian)
  2. Gik, L.D. Fizicheskoe modelirovanie rasprostraneniya seismicheskikh voln v poristykh i treshchinovatykh sredakh. [Physical modeling of seismic wave propagation in porous and fractured environments]. Geologiya i geofizika, 1997, vol. 38, no. 4, pp. 804-815. (in Russian)
  3. Dobrovolskii, I.P. Teoriya podgotovki tektonicheskogo zemletryaseniya. [The preparation tectonic earthquake theory]. Moscow, IFZ AN SSSR Publ., 1991, 216 p. (in Russian)
  4. Egorkin, A.V. Stroeniye zemnoi kory po seismicheskim geotraversam. Glubinnoe stroenie territorii SSSR [The earth's crust structure according to seismic geotraverses. The USSR territory deep structure.]. V.V. Belousov, N.I. Pavlenkova, and G.I. Kvetkovskaya, Eds. Moscow, Nauka Publ., 1991, pp. 118-135. (in Russian)
  5.  Konovalov, Yu.F., Popova, O.G., Kukhmazov, S.U., Minina, N.A., Tuikina, A.S. Glubinnoe stroeniye seismicheskoi zony Kavkazskikh Mineralʹnykh Vod [The Caucasian Mineralnye Vody seismic zone deep structure]. Razvedka i okhrana nedr, 2001, no. 2, pp. 26-29. (in Russian)
  6.  Krylov, S.V., Mishenkin, B.P., Mishenkina, Z.R. Detalʹnye seismicheskie issledovaniya litosfery na P i S volnakh [Detailed seismic lithosphere researches on P and S waves]. Novosibirsk, Nauka Publ., 1993, 199 p. (in Russian)
  7.  Milanovskii, E.E., Rastsvetaev, A.V., Kukhmazov, S.U., Birman, A.S. Noveishaya geodinamika Elʹbrussko-Mineralovodskoi oblasti Severnogo Kavkaza [The latest geodynamics of Elbrus - Mineralnye vody region in the Northern Caucasus]. Geodinamika Kavkaza [Geodynamics of the Caucasus]. Moscow, Nauka Publ, 1989, pp. 99-105. (in Russian)
  8.  Makeev, V.M., Makarova, N.V. Deformatsii glubinnykh sloev zemnoi kory Vostochno-Evropeiskoi platformy: prichiny i sledstviya [The earth's crust deep layers deformations of the East European platform: causes and consequences]. Rossiiskii seismologicheskii zhurnal, 2020, vol. 2, no. 3, pp. 57-67. (in Russian)
  9.  Nikolaev, A.V. Problemy navedennoi seismichnosti. Navedennaya seysmichnostʹ [The induced seismicity problems. Induced seismicity]. Moscow, Nauka Publ., 1994, 222 p. (in Russian)
  10.  Pomerantseva, I.V., Mozzhenko, A.N. Seismicheskie issledovaniya s apparaturoi Zemlya [Seismic researches with equipment "Earth"]. Moscow, Nedra Publ., 1997, 256 p. (in Russian)
  11.  Popova, O.G., Konovalov, Yu.F., Popov, M.G. Osobennosti struktury zemnoi kory seismoopasnykh i aseismichnykh regionov po dannym geotraversov (na primere profilei Bazalʹt, Rubin, Kvarts i Armash-Akhaltsikhe) [Peculiarities of the earth's crust structure in seismically hazardous and aseismic regions according to geotraverses data (by the example of Basalt, Rubin, Quartz and Armash-Akhaltsikhe profiles)]. Vulkanologiya i seismologiya, 1998, no. 4, pp. 178-189. (in Russian)
  12.  Popova, O.G., Seryi, A.V., Konovalov, Yu.F., Nedyad’ko, V.V. Vliyanie katastroficheskikh zemletryasenii na napryazhennoe sostoyanie sredy udalennykh territorii [Influence of the catastrophic earthquakes on the environment stress-strain state in remote areas]. Proc. the 8th Geophysical conference in commemoration of V.V. Fedynskii "Geophysics in the XXI century". Tver, GERS Publ., 2007, pp. 200-204. (in Russian)
  13.  Popova, O.G., Seryi, A.V., Konovalov, Yu.F. Rezulʹtaty dolgovremennogo seismicheskogo monitoringa v seismoopasnom raione Kavkazskikh Mineralʹnykh Vod [The results of long-term seismic monitoring in the seismically hazardous zone of Caucasian Mineralnye Vody]. Geoekologiya, 2008, no. 2, pp. 135-140. (in Russian)
  14.  Popova, O.G., Popov, M.G., Arakelyan, F.O., Nedyad’ko, V.V., Vasyutinskaya, S.D.  Osnovnye rezulʹtaty po lokalʹnomu seismo-ekologicheskomu monitoringu v raznykh regionakh Rossiiskoi Federatsii [The main results of local seismoecological monitoring in various regions of the Russian Federation]. Geoekologiya, 2016, no. 6, pp. 483-496. (in Russian)
  15.  Popova, O.G., Makeev, V.M., Popov, M.G., Arakelyan, F.O., Nedyad’ko, V.V. Geodinamicheskoe sostoyanie sredy territorii planiruemykh i deistvuyushchikh atomnykh elektrostantsii, raspolozhennykh v raznykh tektonicheski aktivnykh oblastyakh [The geodynamic state of the territories of designed and operating NPPs located in various tectonically active regions]. Geologiya i geofizika yuga Rossii, 2017, no. 4, pp. 99-108. (in Russian)
  16.  Popova, O.G., Makeev, V.M., Popov, M.G., Arakelyan, F.O., Nedyad’ko, V.V. Otsenka geodinamiki platformennykh territorii  po rezulʹtatam seismo-ekologicheskogo monitoringa [Assessment of geodynamics in the platform areas by the  seismoecological monitoring results]. Geoekologiya, 2018, no. 4, pp. 40-52. (in Russian)
  17.  Popov, M.G., Popova, O.G. Izuchenie vo vremeni i v prostranstve napryazhennogo sostoyaniya geologicheskoi sredy [Time and space study of the geoenvironment strain state]. Geologiya i geofizika yuga Rossii, 2020, no. 10(3), pp. 79-93. (in Russian)
  18.  Shneerson, M.B. Vvedenie v seismicheskuyu anizotropiyu: teoriya i praktika [Introduction to seismic anisotropy: theory and practice]. Moscow, GERS Publ., 2006, 160 p. (in Russian)
  19.  Aki, K., Christoffersson, A., Husebye, E.S. Determination of the three-dimensional seismic structure of the lithosphere. J. Geophys. Res, 1977, vol. 82, no. 2, pp. 277-296.
  20.  Brady, B. T. Theory of earthquake. Pure Appl. Geophys, 1974, vol. 112, no. 4, pp. 701-719.
  21.  Crampin, S. A review of wave motion in anisotropic and cracked elastic media. Wave motion IVO, 1981, no. 3, pp. 343-391.
  22.  Crampin, S. Seismic-wave propogation through a cracked solid: polarization as a possible dilatancy diagnostic. Geophys. J. R. astr. soc., 1978, no. 53, pp. 426-467.